99 lines
3.5 KiB
Python
99 lines
3.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 Authors of "A Watermark for Large Language Models"
|
|
# available at https://arxiv.org/abs/2301.10226
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
|
|
import torch
|
|
from transformers import LogitsProcessor
|
|
from typing import List, Union
|
|
|
|
GAMMA = float(os.getenv("WATERMARK_GAMMA", 0.5))
|
|
DELTA = float(os.getenv("WATERMARK_DELTA", 2.0))
|
|
|
|
|
|
class WatermarkLogitsProcessor(LogitsProcessor):
|
|
def __init__(
|
|
self,
|
|
gamma: float = GAMMA,
|
|
delta: float = DELTA,
|
|
hash_key: int = 15485863, # just a large prime number to create a rng seed with sufficient bit width
|
|
device: str = "cpu",
|
|
):
|
|
# watermarking parameters
|
|
self.gamma = gamma
|
|
self.delta = delta
|
|
self.rng = torch.Generator(device=device)
|
|
self.hash_key = hash_key
|
|
|
|
def _seed_rng(self, input_ids: Union[List[int], torch.LongTensor]):
|
|
if isinstance(input_ids, list):
|
|
assert (
|
|
len(input_ids) >= 1
|
|
), "requires at least a 1 token prefix sequence to seed rng"
|
|
prev_token = input_ids[-1]
|
|
else:
|
|
assert len(input_ids) == 1
|
|
input_ids = input_ids[0]
|
|
assert (
|
|
input_ids.shape[-1] >= 1
|
|
), "requires at least a 1 token prefix sequence to seed rng"
|
|
prev_token = input_ids[-1].item()
|
|
self.rng.manual_seed(self.hash_key * prev_token)
|
|
|
|
def _get_greenlist_ids(
|
|
self,
|
|
input_ids: Union[List[int], torch.LongTensor],
|
|
max_value: int,
|
|
device: torch.device,
|
|
) -> List[int]:
|
|
# seed the rng using the previous tokens/prefix
|
|
self._seed_rng(input_ids)
|
|
|
|
greenlist_size = int(max_value * self.gamma)
|
|
vocab_permutation = torch.randperm(max_value, device=device, generator=self.rng)
|
|
greenlist_ids = vocab_permutation[:greenlist_size]
|
|
return greenlist_ids
|
|
|
|
@staticmethod
|
|
def _calc_greenlist_mask(
|
|
scores: torch.FloatTensor, greenlist_token_ids
|
|
) -> torch.BoolTensor:
|
|
green_tokens_mask = torch.zeros_like(scores)
|
|
green_tokens_mask[-1, greenlist_token_ids] = 1
|
|
final_mask = green_tokens_mask.bool()
|
|
return final_mask
|
|
|
|
@staticmethod
|
|
def _bias_greenlist_logits(
|
|
scores: torch.Tensor, greenlist_mask: torch.Tensor, greenlist_bias: float
|
|
) -> torch.Tensor:
|
|
scores[greenlist_mask] = scores[greenlist_mask] + greenlist_bias
|
|
return scores
|
|
|
|
def __call__(
|
|
self, input_ids: Union[List[int], torch.LongTensor], scores: torch.FloatTensor
|
|
) -> torch.FloatTensor:
|
|
greenlist_ids = self._get_greenlist_ids(
|
|
input_ids, scores.shape[-1], scores.device
|
|
)
|
|
green_tokens_mask = self._calc_greenlist_mask(
|
|
scores=scores, greenlist_token_ids=greenlist_ids
|
|
)
|
|
|
|
scores = self._bias_greenlist_logits(
|
|
scores=scores, greenlist_mask=green_tokens_mask, greenlist_bias=self.delta
|
|
)
|
|
return scores
|