hf_text-generation-inference/integration-tests/models/test_flash_awq_sharded.py

37 lines
1.3 KiB
Python

import pytest
@pytest.fixture(scope="module")
def flash_llama_awq_handle_sharded(launcher):
with launcher("abhinavkulkarni/codellama-CodeLlama-7b-Python-hf-w4-g128-awq", num_shard=2, quantize="awq") as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_llama_awq_sharded(flash_llama_awq_handle_sharded):
await flash_llama_awq_handle_sharded.health(300)
return flash_llama_awq_handle_sharded.client
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_awq_sharded(flash_llama_awq_sharded, response_snapshot):
response = await flash_llama_awq_sharded.generate(
"What is Deep Learning?", max_new_tokens=10, decoder_input_details=True
)
assert response.details.generated_tokens == 10
assert response.generated_text == "\nWhat is the difference between Deep Learning and Machine"
assert response == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_awq_load_sharded(
flash_llama_awq_sharded, generate_load, response_snapshot
):
responses = await generate_load(
flash_llama_awq_sharded, "What is Deep Learning?", max_new_tokens=10, n=4
)
assert len(responses) == 4
assert all([r.generated_text == "\nWhat is the difference between Deep Learning and Machine" for r in responses])
assert responses == response_snapshot