167 lines
5.2 KiB
Python
167 lines
5.2 KiB
Python
import re
|
|
import torch
|
|
|
|
from transformers import (
|
|
LogitsProcessorList,
|
|
TemperatureLogitsWarper,
|
|
TopKLogitsWarper,
|
|
TopPLogitsWarper,
|
|
TypicalLogitsWarper,
|
|
RepetitionPenaltyLogitsProcessor,
|
|
PreTrainedTokenizerBase,
|
|
)
|
|
from typing import List, Tuple, Optional
|
|
|
|
from text_generation_server.pb import generate_pb2
|
|
from text_generation_server.pb.generate_pb2 import FinishReason
|
|
from text_generation_server.utils.watermark import WatermarkLogitsProcessor
|
|
|
|
|
|
class Sampling:
|
|
def __init__(self, seed: int, device: str = "cpu"):
|
|
self.generator = torch.Generator(device)
|
|
self.generator.manual_seed(seed)
|
|
self.seed = seed
|
|
|
|
def __call__(self, logits):
|
|
probs = torch.nn.functional.softmax(logits, -1)
|
|
next_tokens = torch.multinomial(probs, num_samples=1, generator=self.generator)
|
|
return next_tokens
|
|
|
|
|
|
class Greedy:
|
|
def __call__(self, logits):
|
|
return logits.argmax()
|
|
|
|
|
|
class NextTokenChooser:
|
|
def __init__(
|
|
self,
|
|
watermark=False,
|
|
temperature=1.0,
|
|
repetition_penalty=1.0,
|
|
top_k=None,
|
|
top_p=None,
|
|
typical_p=None,
|
|
do_sample=False,
|
|
seed=0,
|
|
device="cpu",
|
|
):
|
|
warpers = LogitsProcessorList()
|
|
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
|
|
# all samplers can be found in `generation_utils_samplers.py`
|
|
sampling = do_sample
|
|
|
|
if watermark:
|
|
warpers.append(WatermarkLogitsProcessor(device=device))
|
|
if repetition_penalty is not None and repetition_penalty != 1.0:
|
|
warpers.append(RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty))
|
|
if temperature is not None and temperature != 1.0:
|
|
temperature = float(temperature)
|
|
warpers.append(TemperatureLogitsWarper(temperature))
|
|
sampling = True
|
|
if top_k is not None and top_k != 0:
|
|
warpers.append(TopKLogitsWarper(top_k=top_k))
|
|
sampling = True
|
|
if top_p is not None and top_p < 1.0:
|
|
warpers.append(TopPLogitsWarper(top_p=top_p))
|
|
sampling = True
|
|
if typical_p is not None and typical_p < 1.0:
|
|
warpers.append(TypicalLogitsWarper(mass=typical_p))
|
|
sampling = True
|
|
|
|
self.warpers = warpers
|
|
self.choice = Sampling(seed, device) if sampling else Greedy()
|
|
|
|
def __call__(self, input_ids, scores):
|
|
# Warp logits
|
|
if scores.shape[0] > 1:
|
|
# only warp the last token logits
|
|
scores[-1:, :] = self.warpers(input_ids, scores[-1:, :])
|
|
else:
|
|
scores = self.warpers(input_ids, scores)
|
|
|
|
# Compute logprobs
|
|
logprobs = torch.log_softmax(scores, -1)
|
|
|
|
# Choose tokens
|
|
next_id = self.choice(scores[-1])
|
|
|
|
return next_id.view(1, 1), logprobs
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls,
|
|
pb: generate_pb2.NextTokenChooserParameters,
|
|
device: torch.device,
|
|
) -> "NextTokenChooser":
|
|
return NextTokenChooser(
|
|
watermark=pb.watermark,
|
|
temperature=pb.temperature,
|
|
repetition_penalty=pb.repetition_penalty,
|
|
top_k=pb.top_k,
|
|
top_p=pb.top_p,
|
|
typical_p=pb.typical_p,
|
|
do_sample=pb.do_sample,
|
|
seed=pb.seed,
|
|
device=device,
|
|
)
|
|
|
|
|
|
class StopSequenceCriteria:
|
|
def __init__(self, stop_sequence: str):
|
|
stop_sequence = re.escape(stop_sequence)
|
|
self.regex = re.compile(f".*{stop_sequence}$")
|
|
|
|
def __call__(self, output: str) -> bool:
|
|
if self.regex.findall(output):
|
|
return True
|
|
return False
|
|
|
|
|
|
class StoppingCriteria:
|
|
def __init__(
|
|
self,
|
|
eos_token_id: int,
|
|
stop_sequence_criterias: List[StopSequenceCriteria],
|
|
max_new_tokens: int = 20,
|
|
ignore_eos_token: bool = False,
|
|
):
|
|
self.eos_token_id = eos_token_id
|
|
self.stop_sequence_criterias = stop_sequence_criterias
|
|
self.max_new_tokens = max_new_tokens
|
|
self.current_tokens = 0
|
|
self.current_output = ""
|
|
self.ignore_eos_token = ignore_eos_token
|
|
|
|
def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
|
|
self.current_tokens += 1
|
|
if self.current_tokens >= self.max_new_tokens:
|
|
return True, FinishReason.FINISH_REASON_LENGTH
|
|
|
|
if not self.ignore_eos_token and last_token == self.eos_token_id:
|
|
return True, FinishReason.FINISH_REASON_EOS_TOKEN
|
|
|
|
self.current_output += last_output
|
|
for stop_sequence_criteria in self.stop_sequence_criterias:
|
|
if stop_sequence_criteria(self.current_output):
|
|
return True, FinishReason.FINISH_REASON_STOP_SEQUENCE
|
|
|
|
return False, None
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls,
|
|
pb: generate_pb2.StoppingCriteriaParameters,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
) -> "StoppingCriteria":
|
|
stop_sequence_criterias = [
|
|
StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
|
|
]
|
|
return StoppingCriteria(
|
|
tokenizer.eos_token_id,
|
|
stop_sequence_criterias,
|
|
pb.max_new_tokens,
|
|
pb.ignore_eos_token,
|
|
)
|