c4422e5678
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil --> |
||
---|---|---|
.github | ||
assets | ||
benchmark | ||
clients/python | ||
docs | ||
integration-tests | ||
launcher | ||
load_tests | ||
proto | ||
router | ||
server | ||
.dockerignore | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
Dockerfile | ||
LICENSE | ||
Makefile | ||
README.md | ||
rust-toolchain.toml | ||
sagemaker-entrypoint.sh |
README.md
Text Generation Inference
A Rust, Python and gRPC server for text generation inference. Used in production at HuggingFace to power Hugging Chat, the Inference API and Inference Endpoint.
Table of contents
Features
- Serve the most popular Large Language Models with a simple launcher
- Tensor Parallelism for faster inference on multiple GPUs
- Token streaming using Server-Sent Events (SSE)
- Continuous batching of incoming requests for increased total throughput
- Optimized transformers code for inference using flash-attention and Paged Attention on the most popular architectures
- Quantization with bitsandbytes and GPT-Q
- Safetensors weight loading
- Watermarking with A Watermark for Large Language Models
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see transformers.LogitsProcessor)
- Stop sequences
- Log probabilities
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output.
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance.
Optimized architectures
Other architectures are supported on a best effort basis using:
AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")
or
AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")
Get started
Docker
The easiest way of getting started is using the official Docker container:
model=tiiuae/falcon-7b-instruct
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.1 --model-id $model
Note: To use GPUs, you need to install the NVIDIA Container Toolkit. We also recommend using NVIDIA drivers with CUDA version 11.8 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the --gpus all
flag and add --disable-custom-kernels
, please note CPU is not the intended platform for this project, so performance might be subpar.
To see all options to serve your models (in the code or in the cli):
text-generation-launcher --help
You can then query the model using either the /generate
or /generate_stream
routes:
curl 127.0.0.1:8080/generate \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
curl 127.0.0.1:8080/generate_stream \
-X POST \
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
-H 'Content-Type: application/json'
or from Python:
pip install text-generation
from text_generation import Client
client = Client("http://127.0.0.1:8080")
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)
text = ""
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
if not response.token.special:
text += response.token.text
print(text)
API documentation
You can consult the OpenAPI documentation of the text-generation-inference
REST API using the /docs
route.
The Swagger UI is also available at: https://huggingface.github.io/text-generation-inference.
Using a private or gated model
You have the option to utilize the HUGGING_FACE_HUB_TOKEN
environment variable for configuring the token employed by
text-generation-inference
. This allows you to gain access to protected resources.
For example, if you want to serve the gated Llama V2 model variants:
- Go to https://huggingface.co/settings/tokens
- Copy your cli READ token
- Export
HUGGING_FACE_HUB_TOKEN=<your cli READ token>
or with Docker:
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.1 --model-id $model
A note on Shared Memory (shm)
NCCL
is a communication framework used by
PyTorch
to do distributed training/inference. text-generation-inference
make
use of NCCL
to enable Tensor Parallelism to dramatically speed up inference for large language models.
In order to share data between the different devices of a NCCL
group, NCCL
might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.
To allow the container to use 1G of Shared Memory and support SHM sharing, we add --shm-size 1g
on the above command.
If you are running text-generation-inference
inside Kubernetes
. You can also add Shared Memory to the container by
creating a volume with:
- name: shm
emptyDir:
medium: Memory
sizeLimit: 1Gi
and mounting it to /dev/shm
.
Finally, you can also disable SHM sharing by using the NCCL_SHM_DISABLE=1
environment variable. However, note that
this will impact performance.
Distributed Tracing
text-generation-inference
is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the --otlp-endpoint
argument.
Local install
You can also opt to install text-generation-inference
locally.
First install Rust and create a Python virtual environment with at least
Python 3.9, e.g. using conda
:
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
conda create -n text-generation-inference python=3.9
conda activate text-generation-inference
You may also need to install Protoc.
On Linux:
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
On MacOS, using Homebrew:
brew install protobuf
Then run:
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
make run-falcon-7b-instruct
Note: on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
sudo apt-get install libssl-dev gcc -y
CUDA Kernels
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
the kernels by using the DISABLE_CUSTOM_KERNELS=True
environment variable.
Be aware that the official Docker image has them enabled by default.
Run Falcon
Run
make run-falcon-7b-instruct
Quantization
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
make run-falcon-7b-instruct-quantize
4bit quantization is available using the NF4 and FP4 data types from bitsandbytes. It can be enabled by providing --quantize bitsandbytes-nf4
or --quantize bitsandbytes-fp4
as a command line argument to text-generation-launcher
.
Develop
make server-dev
make router-dev
Testing
# python
make python-server-tests
make python-client-tests
# or both server and client tests
make python-tests
# rust cargo tests
make rust-tests
# integration tests
make integration-tests
Other supported hardware
TGI is also supported on the following AI hardware accelerators:
- Habana first-gen Gaudi and Gaudi2: checkout here how to serve models with TGI on Gaudi and Gaudi2 with Optimum Habana