218 lines
6.6 KiB
Python
218 lines
6.6 KiB
Python
import concurrent
|
|
import os
|
|
import re
|
|
import torch
|
|
import torch.distributed
|
|
|
|
from datetime import timedelta
|
|
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from functools import partial
|
|
from huggingface_hub import HfApi, hf_hub_download, try_to_load_from_cache
|
|
from huggingface_hub.utils import LocalEntryNotFoundError
|
|
from tqdm import tqdm
|
|
from typing import List, Optional, Tuple
|
|
from transformers import PreTrainedTokenizerBase
|
|
from transformers.generation.logits_process import (
|
|
LogitsProcessorList,
|
|
TemperatureLogitsWarper,
|
|
TopPLogitsWarper,
|
|
TopKLogitsWarper,
|
|
)
|
|
|
|
from text_generation.pb import generate_pb2
|
|
|
|
|
|
class Sampling:
|
|
def __init__(self, seed: int, device: str = "cpu"):
|
|
self.generator = torch.Generator(device)
|
|
self.generator.manual_seed(seed)
|
|
self.seed = seed
|
|
|
|
def __call__(self, logits):
|
|
probs = torch.nn.functional.softmax(logits, dim=-1)
|
|
next_tokens = torch.multinomial(
|
|
probs, num_samples=1, generator=self.generator
|
|
).squeeze(1)
|
|
return next_tokens
|
|
|
|
|
|
class Greedy:
|
|
def __call__(self, logits):
|
|
return logits.argmax(dim=-1)
|
|
|
|
|
|
class NextTokenChooser:
|
|
def __init__(
|
|
self,
|
|
temperature=1.0,
|
|
top_k=None,
|
|
top_p=None,
|
|
do_sample=False,
|
|
seed=0,
|
|
device="cpu",
|
|
):
|
|
warpers = LogitsProcessorList()
|
|
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
|
|
# all samplers can be found in `generation_utils_samplers.py`
|
|
sampling = do_sample
|
|
if temperature is not None and temperature != 1.0:
|
|
temperature = float(temperature)
|
|
warpers.append(TemperatureLogitsWarper(temperature))
|
|
sampling = True
|
|
if top_k is not None and top_k != 0:
|
|
warpers.append(TopKLogitsWarper(top_k=top_k))
|
|
sampling = True
|
|
if top_p is not None and top_p < 1.0:
|
|
warpers.append(TopPLogitsWarper(top_p=top_p))
|
|
sampling = True
|
|
|
|
self.warpers = warpers
|
|
self.choice = Sampling(seed, device) if sampling else Greedy()
|
|
|
|
def __call__(self, input_ids, scores):
|
|
# Warp logits
|
|
scores = self.warpers(input_ids, scores)
|
|
# Compute logprobs
|
|
logprobs = torch.log_softmax(scores, -1)
|
|
# Choose tokens
|
|
next_ids = self.choice(scores)
|
|
return next_ids, logprobs
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls, pb: generate_pb2.NextTokenChooserParameters, device: torch.device
|
|
) -> "NextTokenChooser":
|
|
return NextTokenChooser(
|
|
temperature=pb.temperature,
|
|
top_k=pb.top_k,
|
|
top_p=pb.top_p,
|
|
do_sample=pb.do_sample,
|
|
seed=pb.seed,
|
|
device=str(device),
|
|
)
|
|
|
|
|
|
class StopSequenceCriteria:
|
|
def __init__(self, stop_sequence: str):
|
|
self.regex = re.compile(f".*{stop_sequence}$")
|
|
|
|
def __call__(self, output: str) -> bool:
|
|
if self.regex.findall(output):
|
|
return True
|
|
return False
|
|
|
|
|
|
class StoppingCriteria:
|
|
def __init__(
|
|
self,
|
|
eos_token_id: int,
|
|
stop_sequence_criterias: List[StopSequenceCriteria],
|
|
max_new_tokens=20,
|
|
):
|
|
self.eos_token_id = eos_token_id
|
|
self.stop_sequence_criterias = stop_sequence_criterias
|
|
self.max_new_tokens = max_new_tokens
|
|
self.current_tokens = 0
|
|
self.current_output = ""
|
|
|
|
def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
|
|
self.current_tokens += 1
|
|
if self.current_tokens >= self.max_new_tokens:
|
|
return True, "length"
|
|
|
|
if last_token == self.eos_token_id:
|
|
return True, "eos_token"
|
|
|
|
self.current_output += last_output
|
|
for stop_sequence_criteria in self.stop_sequence_criterias:
|
|
if stop_sequence_criteria(self.current_output):
|
|
return True, "stop_sequence"
|
|
|
|
return False, None
|
|
|
|
@classmethod
|
|
def from_pb(
|
|
cls,
|
|
pb: generate_pb2.StoppingCriteriaParameters,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
) -> "StoppingCriteria":
|
|
stop_sequence_criterias = [
|
|
StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
|
|
]
|
|
return StoppingCriteria(
|
|
tokenizer.eos_token_id, stop_sequence_criterias, pb.max_new_tokens
|
|
)
|
|
|
|
|
|
def initialize_torch_distributed():
|
|
rank = int(os.getenv("RANK", "0"))
|
|
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
|
|
|
if torch.cuda.is_available():
|
|
# initialized `torch.distributed`
|
|
# Set the device id.
|
|
assert world_size <= torch.cuda.device_count(), "Each process is one gpu"
|
|
device = rank % torch.cuda.device_count()
|
|
torch.cuda.set_device(device)
|
|
backend = "nccl"
|
|
else:
|
|
backend = "gloo"
|
|
|
|
# Call the init process.
|
|
torch.distributed.init_process_group(
|
|
backend=backend,
|
|
world_size=world_size,
|
|
rank=rank,
|
|
timeout=timedelta(seconds=60),
|
|
)
|
|
|
|
return torch.distributed.distributed_c10d._get_default_group(), rank, world_size
|
|
|
|
|
|
def weight_hub_files(model_name, extension=".safetensors"):
|
|
"""Get the safetensors filenames on the hub"""
|
|
api = HfApi()
|
|
info = api.model_info(model_name)
|
|
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
|
|
return filenames
|
|
|
|
|
|
def weight_files(model_name, extension=".safetensors"):
|
|
"""Get the local safetensors filenames"""
|
|
filenames = weight_hub_files(model_name, extension)
|
|
files = []
|
|
for filename in filenames:
|
|
cache_file = try_to_load_from_cache(model_name, filename=filename)
|
|
if cache_file is None:
|
|
raise LocalEntryNotFoundError(
|
|
f"File {filename} of model {model_name} not found in "
|
|
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
|
|
f"Please run `text-generation-server download-weights {model_name}` first."
|
|
)
|
|
files.append(cache_file)
|
|
|
|
return files
|
|
|
|
|
|
def download_weights(model_name, extension=".safetensors"):
|
|
"""Download the safetensors files from the hub"""
|
|
filenames = weight_hub_files(model_name, extension)
|
|
|
|
download_function = partial(
|
|
hf_hub_download,
|
|
repo_id=model_name,
|
|
local_files_only=False,
|
|
)
|
|
|
|
executor = ThreadPoolExecutor(max_workers=5)
|
|
futures = [
|
|
executor.submit(download_function, filename=filename) for filename in filenames
|
|
]
|
|
files = [
|
|
future.result()
|
|
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures))
|
|
]
|
|
|
|
return files
|