hf_text-generation-inference/server/text_generation/utils.py

218 lines
6.6 KiB
Python

import concurrent
import os
import re
import torch
import torch.distributed
from datetime import timedelta
from concurrent.futures import ThreadPoolExecutor
from functools import partial
from huggingface_hub import HfApi, hf_hub_download, try_to_load_from_cache
from huggingface_hub.utils import LocalEntryNotFoundError
from tqdm import tqdm
from typing import List, Optional, Tuple
from transformers import PreTrainedTokenizerBase
from transformers.generation.logits_process import (
LogitsProcessorList,
TemperatureLogitsWarper,
TopPLogitsWarper,
TopKLogitsWarper,
)
from text_generation.pb import generate_pb2
class Sampling:
def __init__(self, seed: int, device: str = "cpu"):
self.generator = torch.Generator(device)
self.generator.manual_seed(seed)
self.seed = seed
def __call__(self, logits):
probs = torch.nn.functional.softmax(logits, dim=-1)
next_tokens = torch.multinomial(
probs, num_samples=1, generator=self.generator
).squeeze(1)
return next_tokens
class Greedy:
def __call__(self, logits):
return logits.argmax(dim=-1)
class NextTokenChooser:
def __init__(
self,
temperature=1.0,
top_k=None,
top_p=None,
do_sample=False,
seed=0,
device="cpu",
):
warpers = LogitsProcessorList()
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
sampling = do_sample
if temperature is not None and temperature != 1.0:
temperature = float(temperature)
warpers.append(TemperatureLogitsWarper(temperature))
sampling = True
if top_k is not None and top_k != 0:
warpers.append(TopKLogitsWarper(top_k=top_k))
sampling = True
if top_p is not None and top_p < 1.0:
warpers.append(TopPLogitsWarper(top_p=top_p))
sampling = True
self.warpers = warpers
self.choice = Sampling(seed, device) if sampling else Greedy()
def __call__(self, input_ids, scores):
# Warp logits
scores = self.warpers(input_ids, scores)
# Compute logprobs
logprobs = torch.log_softmax(scores, -1)
# Choose tokens
next_ids = self.choice(scores)
return next_ids, logprobs
@classmethod
def from_pb(
cls, pb: generate_pb2.NextTokenChooserParameters, device: torch.device
) -> "NextTokenChooser":
return NextTokenChooser(
temperature=pb.temperature,
top_k=pb.top_k,
top_p=pb.top_p,
do_sample=pb.do_sample,
seed=pb.seed,
device=str(device),
)
class StopSequenceCriteria:
def __init__(self, stop_sequence: str):
self.regex = re.compile(f".*{stop_sequence}$")
def __call__(self, output: str) -> bool:
if self.regex.findall(output):
return True
return False
class StoppingCriteria:
def __init__(
self,
eos_token_id: int,
stop_sequence_criterias: List[StopSequenceCriteria],
max_new_tokens=20,
):
self.eos_token_id = eos_token_id
self.stop_sequence_criterias = stop_sequence_criterias
self.max_new_tokens = max_new_tokens
self.current_tokens = 0
self.current_output = ""
def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
self.current_tokens += 1
if self.current_tokens >= self.max_new_tokens:
return True, "length"
if last_token == self.eos_token_id:
return True, "eos_token"
self.current_output += last_output
for stop_sequence_criteria in self.stop_sequence_criterias:
if stop_sequence_criteria(self.current_output):
return True, "stop_sequence"
return False, None
@classmethod
def from_pb(
cls,
pb: generate_pb2.StoppingCriteriaParameters,
tokenizer: PreTrainedTokenizerBase,
) -> "StoppingCriteria":
stop_sequence_criterias = [
StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
]
return StoppingCriteria(
tokenizer.eos_token_id, stop_sequence_criterias, pb.max_new_tokens
)
def initialize_torch_distributed():
rank = int(os.getenv("RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
if torch.cuda.is_available():
# initialized `torch.distributed`
# Set the device id.
assert world_size <= torch.cuda.device_count(), "Each process is one gpu"
device = rank % torch.cuda.device_count()
torch.cuda.set_device(device)
backend = "nccl"
else:
backend = "gloo"
# Call the init process.
torch.distributed.init_process_group(
backend=backend,
world_size=world_size,
rank=rank,
timeout=timedelta(seconds=60),
)
return torch.distributed.distributed_c10d._get_default_group(), rank, world_size
def weight_hub_files(model_name, extension=".safetensors"):
"""Get the safetensors filenames on the hub"""
api = HfApi()
info = api.model_info(model_name)
filenames = [s.rfilename for s in info.siblings if s.rfilename.endswith(extension)]
return filenames
def weight_files(model_name, extension=".safetensors"):
"""Get the local safetensors filenames"""
filenames = weight_hub_files(model_name, extension)
files = []
for filename in filenames:
cache_file = try_to_load_from_cache(model_name, filename=filename)
if cache_file is None:
raise LocalEntryNotFoundError(
f"File {filename} of model {model_name} not found in "
f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
f"Please run `text-generation-server download-weights {model_name}` first."
)
files.append(cache_file)
return files
def download_weights(model_name, extension=".safetensors"):
"""Download the safetensors files from the hub"""
filenames = weight_hub_files(model_name, extension)
download_function = partial(
hf_hub_download,
repo_id=model_name,
local_files_only=False,
)
executor = ThreadPoolExecutor(max_workers=5)
futures = [
executor.submit(download_function, filename=filename) for filename in filenames
]
files = [
future.result()
for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures))
]
return files