hf_text-generation-inference/docs/source/basic_tutorials/docker_launch.md

1.6 KiB

Launching with Docker

The easiest way of getting started is using the official Docker container:

model=tiiuae/falcon-7b-instruct
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.0.0 --model-id $model

Note: To use GPUs, you need to install the NVIDIA Container Toolkit. We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.

You can then query the model using either the /generate or /generate_stream routes:

curl 127.0.0.1:8080/generate \
    -X POST \
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
    -H 'Content-Type: application/json'
curl 127.0.0.1:8080/generate_stream \
    -X POST \
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
    -H 'Content-Type: application/json'

or from Python:

pip install text-generation
from text_generation import Client

client = Client("http://127.0.0.1:8080")
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)

text = ""
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
    if not response.token.special:
        text += response.token.text
print(text)

To see all options to serve your models (in the code) or in the cli:

text-generation-launcher --help