101 lines
3.1 KiB
Python
101 lines
3.1 KiB
Python
import torch
|
|
import torch.distributed
|
|
|
|
from pathlib import Path
|
|
from typing import Optional, Type
|
|
from opentelemetry import trace
|
|
from transformers import AutoTokenizer, PretrainedConfig, PreTrainedTokenizerBase
|
|
from huggingface_hub import hf_hub_download
|
|
import json
|
|
|
|
from text_generation_server.models import CausalLM
|
|
from text_generation_server.models.causal_lm import CausalLMBatch
|
|
from text_generation_server.pb import generate_pb2
|
|
from text_generation_server.models.custom_modeling.mpt_modeling import (
|
|
MPTForCausalLM,
|
|
)
|
|
from text_generation_server.utils import (
|
|
initialize_torch_distributed,
|
|
weight_files,
|
|
Weights,
|
|
)
|
|
|
|
tracer = trace.get_tracer(__name__)
|
|
|
|
|
|
class MPTCausalLMBatch(CausalLMBatch):
|
|
@classmethod
|
|
def from_pb(
|
|
cls,
|
|
pb: generate_pb2.Batch,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
dtype: torch.dtype,
|
|
device: torch.device,
|
|
) -> "CausalLMBatch":
|
|
batch = super().from_pb(pb=pb, tokenizer=tokenizer, dtype=dtype, device=device)
|
|
batch.keys_head_dim_last = False
|
|
return batch
|
|
|
|
|
|
class MPTSharded(CausalLM):
|
|
def __init__(
|
|
self,
|
|
model_id: str,
|
|
revision: Optional[str] = None,
|
|
quantize: Optional[str] = None,
|
|
trust_remote_code: bool = False,
|
|
):
|
|
self.process_group, rank, world_size = initialize_torch_distributed()
|
|
if torch.cuda.is_available():
|
|
device = torch.device(f"cuda:{rank}")
|
|
dtype = torch.float16
|
|
else:
|
|
raise NotImplementedError("MPTSharded is only available on GPU")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_id,
|
|
revision=revision,
|
|
padding_side="left",
|
|
truncation_side="left",
|
|
trust_remote_code=trust_remote_code,
|
|
)
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
|
|
# If model_id is a local path, load the file directly
|
|
local_path = Path(model_id, "config.json")
|
|
if local_path.exists():
|
|
filename = str(local_path.resolve())
|
|
else:
|
|
filename = hf_hub_download(
|
|
model_id, revision=revision, filename="config.json"
|
|
)
|
|
with open(filename, "r") as f:
|
|
config = json.load(f)
|
|
config = PretrainedConfig(**config)
|
|
config.quantize = quantize
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
|
|
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
|
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
|
if config.quantize == "gptq":
|
|
weights._set_gptq_params(model_id)
|
|
|
|
config.quantize = quantize
|
|
model = MPTForCausalLM(config, weights)
|
|
|
|
torch.distributed.barrier(group=self.process_group)
|
|
super(CausalLM, self).__init__(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
requires_padding=False,
|
|
dtype=dtype,
|
|
device=device,
|
|
rank=rank,
|
|
world_size=world_size,
|
|
)
|
|
|
|
@property
|
|
def batch_type(self) -> Type[CausalLMBatch]:
|
|
return MPTCausalLMBatch
|