hf_text-generation-inference/server/text_generation_server/utils/convert.py

109 lines
4.0 KiB
Python

import datetime
import torch
import os
from loguru import logger
from pathlib import Path
from safetensors.torch import save_file, load_file, _find_shared_tensors, _is_complete
from typing import List, Dict
from collections import defaultdict
def _remove_duplicate_names(
state_dict: Dict[str, torch.Tensor],
*,
preferred_names: List[str] = None,
discard_names: List[str] = None,
) -> Dict[str, List[str]]:
if preferred_names is None:
preferred_names = []
preferred_names = set(preferred_names)
if discard_names is None:
discard_names = []
discard_names = set(discard_names)
shareds = _find_shared_tensors(state_dict)
to_remove = defaultdict(list)
for shared in shareds:
complete_names = set(
[name for name in shared if _is_complete(state_dict[name])]
)
if not complete_names:
raise RuntimeError(
f"Error while trying to find names to remove to save state dict, but found no suitable name to keep for saving amongst: {shared}. None is covering the entire storage.Refusing to save/load the model since you could be storing much more memory than needed. Please refer to https://huggingface.co/docs/safetensors/torch_shared_tensors for more information. Or open an issue."
)
keep_name = sorted(list(complete_names))[0]
# Mecanism to preferentially select keys to keep
# coming from the on-disk file to allow
# loading models saved with a different choice
# of keep_name
preferred = complete_names.difference(discard_names)
if preferred:
keep_name = sorted(list(preferred))[0]
if preferred_names:
preferred = preferred_names.intersection(complete_names)
if preferred:
keep_name = sorted(list(preferred))[0]
for name in sorted(shared):
if name != keep_name:
to_remove[keep_name].append(name)
return to_remove
def convert_file(pt_file: Path, sf_file: Path, discard_names: List[str]):
"""
Convert a pytorch file to a safetensors file
This will remove duplicate tensors from the file.
Unfortunately, this might not respect *transformers* convention.
Forcing us to check for potentially different keys during load when looking
for specific tensors (making tensor sharing explicit).
"""
loaded = torch.load(pt_file, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
to_removes = _remove_duplicate_names(loaded, discard_names=discard_names)
metadata = {"format": "pt"}
for kept_name, to_remove_group in to_removes.items():
for to_remove in to_remove_group:
if to_remove not in metadata:
metadata[to_remove] = kept_name
del loaded[to_remove]
# Force tensors to be contiguous
loaded = {k: v.contiguous() for k, v in loaded.items()}
dirname = os.path.dirname(sf_file)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_file, metadata=metadata)
reloaded = load_file(sf_file)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"The output tensors do not match for key {k}")
def convert_files(pt_files: List[Path], sf_files: List[Path], discard_names: List[str]):
assert len(pt_files) == len(sf_files)
N = len(pt_files)
# We do this instead of using tqdm because we want to parse the logs with the launcher
for i, (pt_file, sf_file) in enumerate(zip(pt_files, sf_files)):
# Skip blacklisted files
if (
"arguments" in pt_file.name
or "args" in pt_file.name
or "training" in pt_file.name
):
continue
start = datetime.datetime.now()
convert_file(pt_file, sf_file, discard_names)
elapsed = datetime.datetime.now() - start
logger.info(f"Convert: [{i + 1}/{N}] -- Took: {elapsed}")