hf_text-generation-inference/launcher/src/main.rs

1899 lines
66 KiB
Rust

use clap::{Parser, ValueEnum};
use hf_hub::{
api::sync::{Api, ApiBuilder},
Repo, RepoType,
};
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
use serde::Deserialize;
use std::env;
use std::ffi::OsString;
use std::io::{BufRead, BufReader};
use std::os::unix::process::{CommandExt, ExitStatusExt};
use std::path::Path;
use std::process::{Child, Command, ExitStatus, Stdio};
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
use std::sync::{mpsc, Arc};
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{
fs, io,
io::{Read, Write},
};
use thiserror::Error;
use tracing_subscriber::{filter::LevelFilter, EnvFilter};
mod env_runtime;
mod gpu;
fn get_config(
model_id: &str,
revision: &Option<String>,
) -> Result<Config, Box<dyn std::error::Error>> {
let mut path = std::path::Path::new(model_id).to_path_buf();
let model_id = model_id.to_string();
let filename = if !path.exists() {
// Assume it's a hub id
let api = if let Ok(token) = std::env::var("HF_TOKEN") {
// env variable has precedence over on file token.
ApiBuilder::new().with_token(Some(token)).build()?
} else {
Api::new()?
};
let repo = if let Some(ref revision) = revision {
api.repo(Repo::with_revision(
model_id,
RepoType::Model,
revision.to_string(),
))
} else {
api.model(model_id)
};
repo.get("config.json")?
} else {
path.push("config.json");
path
};
let content = std::fs::read_to_string(filename)?;
let config: RawConfig = serde_json::from_str(&content)?;
let config: Config = config.into();
Ok(config)
}
fn resolve_attention(config: &Option<Config>, lora_adapters: &Option<String>) -> (String, String) {
let compute_capability = gpu::get_cuda_capability();
let mut prefix_caching: Option<String> = std::env::var("USE_PREFIX_CACHING").ok();
let mut attention: Option<String> = std::env::var("ATTENTION").ok();
if let Some(config) = config {
if prefix_caching.is_none() {
if config.vision_config.is_some() {
tracing::info!("Disabling prefix caching because of VLM model");
prefix_caching = Some("0".to_string());
} else if config.is_encoder_decoder {
tracing::info!("Disabling prefix caching because of seq2seq model");
prefix_caching = Some("0".to_string());
}
}
let fallback_attention = if matches!(compute_capability, Some((major, _)) if major < 8) {
"paged"
} else {
"flashdecoding"
};
match config.head_dim {
Some(h) if h == 64 || h == 128 || h == 256 => {
if lora_adapters.is_some() && prefix_caching.is_none() {
tracing::info!("Disabling prefix caching because of lora adapters");
prefix_caching = Some("0".to_string());
}
match config.model_type.as_deref() {
Some("gemma2") | Some("falcon") | Some("deepseek_v2") => {
// Required because gemma2 needs bfloat16 which is not supported by
// flashinfer ?
if attention.is_none() {
tracing::info!(
"Forcing attention to '{fallback_attention}' because model {} requires it",
config.model_type.as_ref().unwrap()
);
attention = Some(fallback_attention.to_string());
}
if fallback_attention == "paged" && prefix_caching.is_none() {
tracing::info!("Disabling prefix caching because it is not supported with 'paged' attention");
prefix_caching = Some("0".to_string());
}
}
Some("t5") => {}
_ => {}
}
}
_ => {
if attention.is_none() {
tracing::info!("Forcing attention to '{fallback_attention}' because head dim is not supported by flashinfer, also disabling prefix caching");
attention = Some(fallback_attention.to_string());
}
if prefix_caching.is_none() {
prefix_caching = Some("0".to_string());
}
}
}
}
let attention = attention.unwrap_or("flashinfer".to_string());
let prefix_caching = prefix_caching.unwrap_or("true".to_string());
(prefix_caching, attention)
}
#[derive(Deserialize)]
struct RawConfig {
max_position_embeddings: Option<usize>,
n_positions: Option<usize>,
model_type: Option<String>,
max_seq_len: Option<usize>,
quantization_config: Option<QuantizationConfig>,
n_embd: Option<usize>,
hidden_size: Option<usize>,
num_attention_heads: Option<usize>,
head_dim: Option<usize>,
vision_config: Option<VisionConfig>,
is_encoder_decoder: Option<bool>,
}
#[derive(Deserialize)]
struct QuantizationConfig {
quant_method: Option<Quantization>,
}
#[derive(Deserialize)]
struct VisionConfig {}
#[derive(Deserialize)]
struct Config {
max_position_embeddings: Option<usize>,
quantize: Option<Quantization>,
head_dim: Option<usize>,
model_type: Option<String>,
vision_config: Option<VisionConfig>,
is_encoder_decoder: bool,
}
impl From<RawConfig> for Config {
fn from(other: RawConfig) -> Self {
let max_position_embeddings = other
.max_position_embeddings
.or(other.max_seq_len)
.or(other.n_positions);
let quantize = other.quantization_config.and_then(|q| q.quant_method);
let head_dim = other.head_dim.or_else(|| {
match (other.hidden_size, other.n_embd, other.num_attention_heads) {
(Some(hidden_size), _, Some(num_attention_heads))
if hidden_size % num_attention_heads == 0 =>
{
Some(hidden_size / num_attention_heads)
}
// Legacy
(_, Some(hidden_size), Some(num_attention_heads))
if hidden_size % num_attention_heads == 0 =>
{
Some(hidden_size / num_attention_heads)
}
_ => None,
}
});
let model_type = other.model_type;
let vision_config = other.vision_config;
let is_encoder_decoder = other.is_encoder_decoder.unwrap_or(false);
Config {
max_position_embeddings,
quantize,
head_dim,
model_type,
vision_config,
is_encoder_decoder,
}
}
}
#[derive(Clone, Copy, Debug, ValueEnum, Deserialize)]
#[serde(rename_all = "kebab-case")]
enum Quantization {
/// 4 bit quantization. Requires a specific AWQ quantized model:
/// <https://hf.co/models?search=awq>.
/// Should replace GPTQ models wherever possible because of the better latency
Awq,
/// 8 bit quantization, doesn't require specific model.
/// Should be a drop-in replacement to bitsandbytes with much better performance.
/// Kernels are from <https://github.com/NetEase-FuXi/EETQ.git>
Eetq,
/// Variable bit quantization. Requires a specific EXL2 quantized model:
/// <https://hf.co/models?search=exl2>. Requires exllama2 kernels and does
/// not support tensor parallelism (num_shard > 1).
Exl2,
/// 4 bit quantization. Requires a specific GTPQ quantized model: <https://hf.co/models?search=gptq>.
/// text-generation-inference will use exllama (faster) kernels wherever possible, and use
/// triton kernel (wider support) when it's not.
/// AWQ has faster kernels.
Gptq,
/// 4 bit quantization. Requires a specific Marlin quantized model: <https://hf.co/models?search=marlin>.
Marlin,
/// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
/// but it is known that the model will be much slower to run than the native f16.
// #[deprecated(
// since = "1.1.0",
// note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
// )]
Bitsandbytes,
/// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
/// but it is known that the model will be much slower to run than the native f16.
BitsandbytesNf4,
/// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
/// perplexity performance for you model
BitsandbytesFp4,
/// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
/// This dtype has native ops should be the fastest if available.
/// This is currently not the fastest because of local unpacking + padding to satisfy matrix
/// multiplication limitations.
Fp8,
}
impl std::fmt::Display for Quantization {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// To keep in track with `server`.
match self {
#[allow(deprecated)]
// Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
Quantization::Bitsandbytes => {
write!(f, "bitsandbytes")
}
Quantization::BitsandbytesNf4 => {
write!(f, "bitsandbytes-nf4")
}
Quantization::BitsandbytesFp4 => {
write!(f, "bitsandbytes-fp4")
}
Quantization::Exl2 => {
write!(f, "exl2")
}
Quantization::Gptq => {
write!(f, "gptq")
}
Quantization::Marlin => {
write!(f, "marlin")
}
Quantization::Awq => {
write!(f, "awq")
}
Quantization::Eetq => {
write!(f, "eetq")
}
Quantization::Fp8 => {
write!(f, "fp8")
}
}
}
}
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
Float16,
#[clap(name = "bfloat16")]
BFloat16,
}
impl std::fmt::Display for Dtype {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// To keep in track with `server`.
match self {
Dtype::Float16 => {
write!(f, "float16")
}
Dtype::BFloat16 => {
write!(f, "bfloat16")
}
}
}
}
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
Linear,
Dynamic,
}
impl std::fmt::Display for RopeScaling {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// To keep in track with `server`.
match self {
RopeScaling::Linear => {
write!(f, "linear")
}
RopeScaling::Dynamic => {
write!(f, "dynamic")
}
}
}
}
#[derive(Clone, Copy, Debug, ValueEnum)]
pub enum UsageStatsLevel {
/// Default option, usage statistics are collected anonymously
On,
/// Disables all collection of usage statistics
Off,
/// Doesn't send the error stack trace or error type, but allows sending a crash event
NoStack,
}
impl std::fmt::Display for UsageStatsLevel {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
// To keep in track with `server`.
match self {
UsageStatsLevel::On => {
write!(f, "on")
}
UsageStatsLevel::Off => {
write!(f, "off")
}
UsageStatsLevel::NoStack => {
write!(f, "no-stack")
}
}
}
}
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
/// The name of the model to load.
/// Can be a MODEL_ID as listed on <https://hf.co/models> like
/// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
/// Or it can be a local directory containing the necessary files
/// as saved by `save_pretrained(...)` methods of transformers
#[clap(default_value = "bigscience/bloom-560m", long, env)]
model_id: String,
/// The actual revision of the model if you're referring to a model
/// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
#[clap(long, env)]
revision: Option<String>,
/// The number of tokenizer workers used for payload validation and truncation inside the
/// router.
#[clap(default_value = "2", long, env)]
validation_workers: usize,
/// Whether to shard the model across multiple GPUs
/// By default text-generation-inference will use all available GPUs to run
/// the model. Setting it to `false` deactivates `num_shard`.
#[clap(long, env)]
sharded: Option<bool>,
/// The number of shards to use if you don't want to use all GPUs on a given machine.
/// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
/// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
/// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
#[clap(long, env)]
num_shard: Option<usize>,
/// Quantization method to use for the model. It is not necessary to specify this option
/// for pre-quantized models, since the quantization method is read from the model
/// configuration.
///
/// Marlin kernels will be used automatically for GPTQ/AWQ models.
#[clap(long, env, value_enum)]
quantize: Option<Quantization>,
/// The number of input_ids to speculate on
/// If using a medusa model, the heads will be picked up automatically
/// Other wise, it will use n-gram speculation which is relatively free
/// in terms of compute, but the speedup heavily depends on the task.
#[clap(long, env)]
speculate: Option<usize>,
/// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
#[clap(long, env, value_enum)]
dtype: Option<Dtype>,
/// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
/// encouraged when loading a model with custom code to ensure no malicious code has been
/// contributed in a newer revision.
#[clap(long, env, value_enum)]
trust_remote_code: bool,
/// The maximum amount of concurrent requests for this particular deployment.
/// Having a low limit will refuse clients requests instead of having them
/// wait for too long and is usually good to handle backpressure correctly.
#[clap(default_value = "128", long, env)]
max_concurrent_requests: usize,
/// This is the maximum allowed value for clients to set `best_of`.
/// Best of makes `n` generations at the same time, and return the best
/// in terms of overall log probability over the entire generated sequence
#[clap(default_value = "2", long, env)]
max_best_of: usize,
/// This is the maximum allowed value for clients to set `stop_sequences`.
/// Stop sequences are used to allow the model to stop on more than just
/// the EOS token, and enable more complex "prompting" where users can preprompt
/// the model in a specific way and define their "own" stop token aligned with
/// their prompt.
#[clap(default_value = "4", long, env)]
max_stop_sequences: usize,
/// This is the maximum allowed value for clients to set `top_n_tokens`.
/// `top_n_tokens` is used to return information about the the `n` most likely
/// tokens at each generation step, instead of just the sampled token. This
/// information can be used for downstream tasks like for classification or
/// ranking.
#[clap(default_value = "5", long, env)]
max_top_n_tokens: u32,
/// This is the maximum allowed input length (expressed in number of tokens)
/// for users. The larger this value, the longer prompt users can send which
/// can impact the overall memory required to handle the load.
/// Please note that some models have a finite range of sequence they can handle.
/// Default to min(max_position_embeddings - 1, 4095)
#[clap(long, env)]
max_input_tokens: Option<usize>,
/// Legacy version of [`Args::max_input_tokens`].
#[clap(long, env)]
max_input_length: Option<usize>,
/// This is the most important value to set as it defines the "memory budget"
/// of running clients requests.
/// Clients will send input sequences and ask to generate `max_new_tokens`
/// on top. with a value of `1512` users can send either a prompt of
/// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
/// `1511` max_new_tokens.
/// The larger this value, the larger amount each request will be in your RAM
/// and the less effective batching can be.
/// Default to min(max_position_embeddings, 4096)
#[clap(long, env)]
max_total_tokens: Option<usize>,
/// This represents the ratio of waiting queries vs running queries where
/// you want to start considering pausing the running queries to include the waiting
/// ones into the same batch.
/// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
/// only 10 queries left in the current batch we check if we can fit those 12
/// waiting queries into the batching strategy, and if yes, then batching happens
/// delaying the 10 running queries by a `prefill` run.
///
/// This setting is only applied if there is room in the batch
/// as defined by `max_batch_total_tokens`.
#[clap(default_value = "0.3", long, env)]
waiting_served_ratio: f32,
/// Limits the number of tokens for the prefill operation.
/// Since this operation take the most memory and is compute bound, it is interesting
/// to limit the number of requests that can be sent.
/// Default to `max_input_tokens + 50` to give a bit of room.
#[clap(long, env)]
max_batch_prefill_tokens: Option<u32>,
/// **IMPORTANT** This is one critical control to allow maximum usage
/// of the available hardware.
///
/// This represents the total amount of potential tokens within a batch.
/// When using padding (not recommended) this would be equivalent of
/// `batch_size` * `max_total_tokens`.
///
/// However in the non-padded (flash attention) version this can be much finer.
///
/// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
/// or a single query of `1000` tokens.
///
/// Overall this number should be the largest possible amount that fits the
/// remaining memory (after the model is loaded). Since the actual memory overhead
/// depends on other parameters like if you're using quantization, flash attention
/// or the model implementation, text-generation-inference cannot infer this number
/// automatically.
#[clap(long, env)]
max_batch_total_tokens: Option<u32>,
/// This setting defines how many tokens can be passed before forcing the waiting
/// queries to be put on the batch (if the size of the batch allows for it).
/// New queries require 1 `prefill` forward, which is different from `decode`
/// and therefore you need to pause the running batch in order to run `prefill`
/// to create the correct values for the waiting queries to be able to join the batch.
///
/// With a value too small, queries will always "steal" the compute to run `prefill`
/// and running queries will be delayed by a lot.
///
/// With a value too big, waiting queries could wait for a very long time
/// before being allowed a slot in the running batch. If your server is busy
/// that means that requests that could run in ~2s on an empty server could
/// end up running in ~20s because the query had to wait for 18s.
///
/// This number is expressed in number of tokens to make it a bit more
/// "model" agnostic, but what should really matter is the overall latency
/// for end users.
#[clap(default_value = "20", long, env)]
max_waiting_tokens: usize,
/// Enforce a maximum number of requests per batch
/// Specific flag for hardware targets that do not support unpadded inference
#[clap(long, env)]
max_batch_size: Option<usize>,
/// Specify the batch sizes to compute cuda graphs for.
/// Use "0" to disable.
/// Default = "1,2,4,8,16,32"
#[clap(long, env, value_delimiter = ',')]
cuda_graphs: Option<Vec<usize>>,
/// The IP address to listen on
#[clap(default_value = "0.0.0.0", long, env)]
hostname: String,
/// The port to listen on.
#[clap(default_value = "3000", long, short, env)]
port: u16,
/// The name of the socket for gRPC communication between the webserver
/// and the shards.
#[clap(default_value = "/tmp/text-generation-server", long, env)]
shard_uds_path: String,
/// The address the master shard will listen on. (setting used by torch distributed)
#[clap(default_value = "localhost", long, env)]
master_addr: String,
/// The address the master port will listen on. (setting used by torch distributed)
#[clap(default_value = "29500", long, env)]
master_port: usize,
/// The location of the huggingface hub cache.
/// Used to override the location if you want to provide a mounted disk for instance
#[clap(long, env)]
huggingface_hub_cache: Option<String>,
/// The location of the huggingface hub cache.
/// Used to override the location if you want to provide a mounted disk for instance
#[clap(long, env)]
weights_cache_override: Option<String>,
/// For some models (like bloom), text-generation-inference implemented custom
/// cuda kernels to speed up inference. Those kernels were only tested on A100.
/// Use this flag to disable them if you're running on different hardware and
/// encounter issues.
#[clap(long, env)]
disable_custom_kernels: bool,
/// Limit the CUDA available memory.
/// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
#[clap(default_value = "1.0", long, env)]
cuda_memory_fraction: f32,
/// Rope scaling will only be used for RoPE models
/// and allow rescaling the position rotary to accomodate for
/// larger prompts.
///
/// Goes together with `rope_factor`.
///
/// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
/// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
/// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
/// basically)
///
/// `--rope-scaling linear --rope-factor` fully describes the scaling you want
#[clap(long, env)]
rope_scaling: Option<RopeScaling>,
/// Rope scaling will only be used for RoPE models
/// See `rope_scaling`
#[clap(long, env)]
rope_factor: Option<f32>,
/// Outputs the logs in JSON format (useful for telemetry)
#[clap(long, env)]
json_output: bool,
#[clap(long, env)]
otlp_endpoint: Option<String>,
#[clap(default_value = "text-generation-inference.router", long, env)]
otlp_service_name: String,
#[clap(long, env)]
cors_allow_origin: Vec<String>,
#[clap(long, env)]
api_key: Option<String>,
#[clap(long, env)]
watermark_gamma: Option<f32>,
#[clap(long, env)]
watermark_delta: Option<f32>,
/// Enable ngrok tunneling
#[clap(long, env)]
ngrok: bool,
/// ngrok authentication token
#[clap(long, env)]
ngrok_authtoken: Option<String>,
/// ngrok edge
#[clap(long, env)]
ngrok_edge: Option<String>,
/// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
/// include a `chat_template`. If not provided, the default config will be used from the model hub.
#[clap(long, env)]
tokenizer_config_path: Option<String>,
/// Disable outlines grammar constrained generation.
/// This is a feature that allows you to generate text that follows a specific grammar.
#[clap(long, env)]
disable_grammar_support: bool,
/// Display a lot of information about your runtime environment
#[clap(long, short, action)]
env: bool,
/// Control the maximum number of inputs that a client can send in a single request
#[clap(default_value = "4", long, env)]
max_client_batch_size: usize,
/// Lora Adapters a list of adapter ids i.e. `repo/adapter1,repo/adapter2` to load during
/// startup that will be available to callers via the `adapter_id` field in a request.
#[clap(long, env)]
lora_adapters: Option<String>,
/// Control if anonymous usage stats are collected.
/// Options are "on", "off" and "no-stack"
/// Defaul is on.
#[clap(default_value = "on", long, env)]
usage_stats: UsageStatsLevel,
}
#[derive(Debug)]
enum ShardStatus {
Ready,
Failed(usize),
}
#[allow(clippy::too_many_arguments)]
fn shard_manager(
model_id: String,
revision: Option<String>,
quantize: Option<Quantization>,
speculate: Option<usize>,
dtype: Option<Dtype>,
trust_remote_code: bool,
uds_path: String,
rank: usize,
world_size: usize,
master_addr: String,
master_port: usize,
huggingface_hub_cache: Option<String>,
weights_cache_override: Option<String>,
disable_custom_kernels: bool,
watermark_gamma: Option<f32>,
watermark_delta: Option<f32>,
cuda_graphs: Vec<usize>,
cuda_memory_fraction: f32,
rope_scaling: Option<RopeScaling>,
rope_factor: Option<f32>,
max_total_tokens: usize,
max_batch_size: Option<usize>,
max_input_tokens: usize,
lora_adapters: Option<String>,
otlp_endpoint: Option<String>,
otlp_service_name: String,
log_level: LevelFilter,
status_sender: mpsc::Sender<ShardStatus>,
shutdown: Arc<AtomicBool>,
_shutdown_sender: mpsc::Sender<()>,
) {
// Enter shard-manager tracing span
let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();
// Get UDS path
let uds_string = format!("{uds_path}-{rank}");
let uds = Path::new(&uds_string);
// Clean previous runs
if uds.exists() {
fs::remove_file(uds).unwrap();
}
// Process args
let mut shard_args = vec![
"serve".to_string(),
model_id,
"--uds-path".to_string(),
uds_path,
"--logger-level".to_string(),
log_level.to_string().to_uppercase(),
"--json-output".to_string(),
];
// Activate trust remote code
if trust_remote_code {
shard_args.push("--trust-remote-code".to_string());
}
// Activate tensor parallelism
if world_size > 1 {
shard_args.push("--sharded".to_string());
}
if let Some(quantize) = quantize {
shard_args.push("--quantize".to_string());
shard_args.push(quantize.to_string())
}
if let Some(speculate) = speculate {
shard_args.push("--speculate".to_string());
shard_args.push(speculate.to_string())
}
if let Some(dtype) = dtype {
shard_args.push("--dtype".to_string());
shard_args.push(dtype.to_string())
}
// Model optional revision
if let Some(revision) = revision {
shard_args.push("--revision".to_string());
shard_args.push(revision)
}
let rope = match (rope_scaling, rope_factor) {
(None, None) => None,
(Some(scaling), None) => Some((scaling, 1.0)),
(Some(scaling), Some(factor)) => Some((scaling, factor)),
(None, Some(factor)) => Some((RopeScaling::Linear, factor)),
};
// OpenTelemetry Endpoint
if let Some(otlp_endpoint) = otlp_endpoint {
shard_args.push("--otlp-endpoint".to_string());
shard_args.push(otlp_endpoint);
}
// OpenTelemetry Service Name
shard_args.push("--otlp-service-name".to_string());
shard_args.push(otlp_service_name);
// In case we use sliding window, we may ignore the sliding in flash for some backends depending on the parameter.
shard_args.push("--max-input-tokens".to_string());
shard_args.push(max_input_tokens.to_string());
// Copy current process env
let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
// Remove LOG_LEVEL if present
envs.retain(|(name, _)| name != "LOG_LEVEL");
// Torch Distributed Env vars
envs.push(("RANK".into(), rank.to_string().into()));
envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
envs.push(("MASTER_ADDR".into(), master_addr.into()));
envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
// CUDA memory fraction
envs.push((
"CUDA_MEMORY_FRACTION".into(),
cuda_memory_fraction.to_string().into(),
));
// Safetensors load fast
envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
// Disable progress bar
envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));
// Enable hf transfer for insane download speeds
let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
envs.push((
"HF_HUB_ENABLE_HF_TRANSFER".into(),
enable_hf_transfer.into(),
));
// Parse Inference API token
if let Ok(api_token) = env::var("HF_API_TOKEN") {
envs.push(("HF_TOKEN".into(), api_token.into()))
};
// Detect rope scaling
// Sending as env instead of CLI args to not bloat everything
// those only can be used by RoPE models, so passing information around
// for all models will complexify code unnecessarily
if let Some((scaling, factor)) = rope {
envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
}
envs.push((
"MAX_TOTAL_TOKENS".into(),
max_total_tokens.to_string().into(),
));
if let Some(max_batch_size) = max_batch_size {
envs.push(("MAX_BATCH_SIZE".into(), max_batch_size.to_string().into()));
}
// Lora Adapters
if let Some(lora_adapters) = lora_adapters {
envs.push(("LORA_ADAPTERS".into(), lora_adapters.into()));
}
// If huggingface_hub_cache is some, pass it to the shard
// Useful when running inside a docker container
if let Some(huggingface_hub_cache) = huggingface_hub_cache {
envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
};
// If weights_cache_override is some, pass it to the shard
// Useful when running inside a HuggingFace Inference Endpoint
if let Some(weights_cache_override) = weights_cache_override {
envs.push((
"WEIGHTS_CACHE_OVERRIDE".into(),
weights_cache_override.into(),
));
};
// Enable experimental support for cuda graphs
if !cuda_graphs.is_empty() {
envs.push((
"CUDA_GRAPHS".into(),
cuda_graphs
.into_iter()
.map(|c| c.to_string())
.collect::<Vec<_>>()
.join(",")
.into(),
));
}
// If disable_custom_kernels is true, pass it to the shard as an env var
if disable_custom_kernels {
envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
}
// Watermark Gamma
if let Some(watermark_gamma) = watermark_gamma {
envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
}
// Watermark Delta
if let Some(watermark_delta) = watermark_delta {
envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
}
// Start process
tracing::info!("Starting shard");
let mut p = match Command::new("text-generation-server")
.args(shard_args)
.env_clear()
.envs(envs)
.stdin(Stdio::piped())
.stdout(Stdio::piped())
.stderr(Stdio::piped())
.process_group(0)
.spawn()
{
Ok(p) => p,
Err(err) => {
if err.kind() == io::ErrorKind::NotFound {
tracing::error!("text-generation-server not found in PATH");
tracing::error!("Please install it with `make install-server`")
}
{
tracing::error!("{}", err);
}
status_sender.send(ShardStatus::Failed(rank)).unwrap();
return;
}
};
// Redirect STDOUT to the console
let mut pstdin = p.stdin.take().unwrap();
let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
//stdout tracing thread
thread::spawn(move || {
log_lines(shard_stdout_reader);
});
// We read stderr in another thread as it seems that lines() can block in some cases
let (err_sender, err_receiver) = mpsc::channel();
thread::spawn(move || {
for line in shard_stderr_reader.lines().map_while(Result::ok) {
err_sender.send(line).unwrap_or(());
}
});
// We read stdin in another thread as it seems that lines() can block in some cases
thread::spawn(move || {
let mut stdin = io::stdin(); // We get `Stdin` here.
loop {
let mut buffer = vec![0; 4096];
if let Ok(n) = stdin.read(&mut buffer) {
if n > 0 {
let _ = pstdin.write_all(&buffer[..n]);
}
}
}
});
let mut ready = false;
let start_time = Instant::now();
let mut wait_time = Instant::now();
loop {
// Process exited
if let Some(exit_status) = p.try_wait().unwrap() {
let mut err = String::new();
while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
err = err + "\n" + &line;
}
tracing::error!("Shard complete standard error output:\n{err}");
if let Some(signal) = exit_status.signal() {
tracing::error!("Shard process was signaled to shutdown with signal {signal}");
}
status_sender.send(ShardStatus::Failed(rank)).unwrap();
return;
}
// We received a shutdown signal
if shutdown.load(Ordering::SeqCst) {
terminate("shard", p, Duration::from_secs(90)).unwrap();
return;
}
// Shard is ready
if uds.exists() && !ready {
tracing::info!("Shard ready in {:?}", start_time.elapsed());
status_sender.send(ShardStatus::Ready).unwrap();
ready = true;
} else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
tracing::info!("Waiting for shard to be ready...");
wait_time = Instant::now();
}
sleep(Duration::from_millis(100));
}
}
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
tracing::info!("Shutting down shards");
// Update shutdown value to true
// This will be picked up by the shard manager
shutdown.store(true, Ordering::SeqCst);
// Wait for shards to shutdown
// This will block till all shutdown_sender are dropped
let _ = shutdown_receiver.recv();
}
fn num_cuda_devices() -> Option<usize> {
let devices = match env::var("CUDA_VISIBLE_DEVICES") {
Ok(devices) => devices,
Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
Ok(devices) => devices,
Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
},
};
let n_devices = devices.split(',').count();
Some(n_devices)
}
#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
Trace,
Debug,
Info,
Success,
Warning,
Error,
Critical,
}
#[derive(Deserialize)]
struct PythonLogLevel {
name: PythonLogLevelEnum,
}
#[derive(Deserialize)]
struct PythonLogRecord {
level: PythonLogLevel,
}
#[derive(Deserialize)]
struct PythonLogMessage {
text: String,
record: PythonLogRecord,
}
impl PythonLogMessage {
fn trace(&self) {
match self.record.level.name {
PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text.trim_end()),
PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text.trim_end()),
PythonLogLevelEnum::Info => tracing::info!("{}", self.text.trim_end()),
PythonLogLevelEnum::Success => tracing::info!("{}", self.text.trim_end()),
PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text.trim_end()),
PythonLogLevelEnum::Error => tracing::error!("{}", self.text.trim_end()),
PythonLogLevelEnum::Critical => tracing::error!("{}", self.text.trim_end()),
}
}
}
impl TryFrom<&[u8]> for PythonLogMessage {
type Error = serde_json::Error;
fn try_from(value: &[u8]) -> Result<Self, Self::Error> {
serde_json::from_slice::<Self>(value)
}
}
fn log_lines<R: Sized + Read>(mut bufread: BufReader<R>) {
let mut buffer = vec![0u8; 8 * 4096];
let mut stdout = std::io::stdout();
loop {
let n = bufread.read(&mut buffer);
if let Ok(n) = n {
if n > 0 {
let mut lines = buffer[..n].split(|i| *i == b'\n').peekable();
while let Some(line) = lines.next() {
match PythonLogMessage::try_from(line) {
Ok(log) => log.trace(),
// For interactive debugging ?
Err(_) => {
if LevelFilter::current() >= tracing::Level::DEBUG {
stdout.write_all(line).unwrap();
if lines.peek().is_some() {
stdout.write_all(b"\n").unwrap();
}
stdout.flush().unwrap();
}
}
}
}
}
}
}
}
fn find_num_shards(
sharded: Option<bool>,
num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
// get the number of shards given `sharded` and `num_shard`
let num_shard = match (sharded, num_shard) {
(Some(true), None) => {
// try to default to the number of available GPUs
tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK");
let n_devices = num_cuda_devices()
.expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES/ZE_AFFINITY_MASK are not set");
if n_devices <= 1 {
return Err(LauncherError::NotEnoughCUDADevices(format!(
"`sharded` is true but only found {n_devices} CUDA devices"
)));
}
n_devices
}
(Some(true), Some(num_shard)) => {
// we can't have only one shard while sharded
if num_shard <= 1 {
return Err(LauncherError::ArgumentValidation(
"`sharded` is true but `num_shard` <= 1".to_string(),
));
}
num_shard
}
(Some(false), Some(num_shard)) => num_shard,
(Some(false), None) => 1,
(None, None) => num_cuda_devices().unwrap_or(1),
(None, Some(num_shard)) => num_shard,
};
if num_shard < 1 {
return Err(LauncherError::ArgumentValidation(
"`num_shard` cannot be < 1".to_string(),
));
}
Ok(num_shard)
}
#[derive(Debug, Error)]
enum LauncherError {
#[error("Invalid argument: {0}")]
ArgumentValidation(String),
#[error("not enough cuda devices: {0}")]
NotEnoughCUDADevices(String),
#[error("Download error")]
DownloadError,
#[error("Shard cannot start")]
ShardCannotStart,
#[error("Shard disconnected")]
ShardDisconnected,
#[error("Shard failed")]
ShardFailed,
#[error("Webserver failed")]
WebserverFailed,
#[error("Webserver cannot start")]
WebserverCannotStart,
}
fn download_convert_model(
model_id: &str,
revision: Option<&str>,
trust_remote_code: bool,
huggingface_hub_cache: Option<&str>,
weights_cache_override: Option<&str>,
running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
// Enter download tracing span
let _span = tracing::span!(tracing::Level::INFO, "download").entered();
let mut download_args = vec![
"download-weights".to_string(),
model_id.to_string(),
"--extension".to_string(),
".safetensors".to_string(),
"--logger-level".to_string(),
"INFO".to_string(),
"--json-output".to_string(),
];
// Model optional revision
if let Some(revision) = &revision {
download_args.push("--revision".to_string());
download_args.push(revision.to_string())
}
// Trust remote code for automatic peft fusion
if trust_remote_code {
download_args.push("--trust-remote-code".to_string());
}
// Copy current process env
let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
// Remove LOG_LEVEL if present
envs.retain(|(name, _)| name != "LOG_LEVEL");
// Disable progress bar
envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));
// If huggingface_hub_cache is set, pass it to the download process
// Useful when running inside a docker container
if let Some(ref huggingface_hub_cache) = huggingface_hub_cache {
envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
};
// Enable hf transfer for insane download speeds
let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
envs.push((
"HF_HUB_ENABLE_HF_TRANSFER".into(),
enable_hf_transfer.into(),
));
// Parse Inference API token
if let Ok(api_token) = env::var("HF_API_TOKEN") {
envs.push(("HF_TOKEN".into(), api_token.into()))
};
// If args.weights_cache_override is some, pass it to the download process
// Useful when running inside a HuggingFace Inference Endpoint
if let Some(weights_cache_override) = &weights_cache_override {
envs.push((
"WEIGHTS_CACHE_OVERRIDE".into(),
weights_cache_override.into(),
));
};
// Start process
tracing::info!("Starting check and download process for {model_id}");
let mut download_process = match Command::new("text-generation-server")
.args(download_args)
.env_clear()
.envs(envs)
.stdout(Stdio::piped())
.stderr(Stdio::piped())
.process_group(0)
.spawn()
{
Ok(p) => p,
Err(err) => {
if err.kind() == io::ErrorKind::NotFound {
tracing::error!("text-generation-server not found in PATH");
tracing::error!("Please install it with `make install-server`")
} else {
tracing::error!("{}", err);
}
return Err(LauncherError::DownloadError);
}
};
let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
thread::spawn(move || {
log_lines(download_stdout);
});
let download_stderr = BufReader::new(download_process.stderr.take().unwrap());
// We read stderr in another thread as it seems that lines() can block in some cases
let (err_sender, err_receiver) = mpsc::channel();
thread::spawn(move || {
for line in download_stderr.lines().map_while(Result::ok) {
err_sender.send(line).unwrap_or(());
}
});
loop {
if let Some(status) = download_process.try_wait().unwrap() {
if status.success() {
tracing::info!("Successfully downloaded weights for {model_id}");
break;
}
let mut err = String::new();
while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
err = err + "\n" + &line;
}
if let Some(signal) = status.signal() {
tracing::error!(
"Download process was signaled to shutdown with signal {signal}: {err}"
);
} else {
tracing::error!("Download encountered an error: {err}");
}
return Err(LauncherError::DownloadError);
}
if !running.load(Ordering::SeqCst) {
terminate("download", download_process, Duration::from_secs(10)).unwrap();
return Ok(());
}
sleep(Duration::from_millis(100));
}
Ok(())
}
#[allow(clippy::too_many_arguments)]
fn spawn_shards(
num_shard: usize,
args: &Args,
cuda_graphs: Vec<usize>,
max_total_tokens: usize,
max_input_tokens: usize,
quantize: Option<Quantization>,
max_log_level: LevelFilter,
shutdown: Arc<AtomicBool>,
shutdown_receiver: &mpsc::Receiver<()>,
shutdown_sender: mpsc::Sender<()>,
status_receiver: &mpsc::Receiver<ShardStatus>,
status_sender: mpsc::Sender<ShardStatus>,
running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
// Start shard processes
for rank in 0..num_shard {
let model_id = args.model_id.clone();
let revision = args.revision.clone();
let uds_path = args.shard_uds_path.clone();
let master_addr = args.master_addr.clone();
let huggingface_hub_cache = args.huggingface_hub_cache.clone();
let weights_cache_override = args.weights_cache_override.clone();
let status_sender = status_sender.clone();
let shutdown = shutdown.clone();
let shutdown_sender = shutdown_sender.clone();
let otlp_endpoint = args.otlp_endpoint.clone();
let otlp_service_name = args.otlp_service_name.clone();
let speculate = args.speculate;
let dtype = args.dtype;
let trust_remote_code = args.trust_remote_code;
let master_port = args.master_port;
let disable_custom_kernels = args.disable_custom_kernels;
let watermark_gamma = args.watermark_gamma;
let watermark_delta = args.watermark_delta;
let cuda_graphs_clone = cuda_graphs.clone();
let cuda_memory_fraction = args.cuda_memory_fraction;
let rope_scaling = args.rope_scaling;
let rope_factor = args.rope_factor;
let max_batch_size = args.max_batch_size;
let lora_adapters = args.lora_adapters.clone();
thread::spawn(move || {
shard_manager(
model_id,
revision,
quantize,
speculate,
dtype,
trust_remote_code,
uds_path,
rank,
num_shard,
master_addr,
master_port,
huggingface_hub_cache,
weights_cache_override,
disable_custom_kernels,
watermark_gamma,
watermark_delta,
cuda_graphs_clone,
cuda_memory_fraction,
rope_scaling,
rope_factor,
max_total_tokens,
max_batch_size,
max_input_tokens,
lora_adapters,
otlp_endpoint,
otlp_service_name,
max_log_level,
status_sender,
shutdown,
shutdown_sender,
)
});
}
drop(shutdown_sender);
// Wait for shard to start
let mut shard_ready = 0;
while running.load(Ordering::SeqCst) {
match status_receiver.try_recv() {
Ok(ShardStatus::Ready) => {
shard_ready += 1;
if shard_ready == num_shard {
break;
}
}
Err(TryRecvError::Empty) => {
sleep(Duration::from_millis(100));
}
Ok(ShardStatus::Failed(rank)) => {
tracing::error!("Shard {rank} failed to start");
shutdown_shards(shutdown, shutdown_receiver);
return Err(LauncherError::ShardCannotStart);
}
Err(TryRecvError::Disconnected) => {
tracing::error!("Shard status channel disconnected");
shutdown_shards(shutdown, shutdown_receiver);
return Err(LauncherError::ShardDisconnected);
}
}
}
Ok(())
}
fn compute_type(num_shard: usize) -> Option<String> {
let output = Command::new("nvidia-smi")
.args(["--query-gpu=gpu_name", "--format=csv"])
.output()
.ok()?;
let output = String::from_utf8(output.stdout).ok()?;
let fullname = output.split('\n').nth(1)?;
let cardname = fullname.replace(' ', "-").to_lowercase();
let compute_type = format!("{num_shard}-{cardname}");
Some(compute_type)
}
fn spawn_webserver(
num_shard: usize,
args: Args,
max_input_tokens: usize,
max_total_tokens: usize,
max_batch_prefill_tokens: u32,
shutdown: Arc<AtomicBool>,
shutdown_receiver: &mpsc::Receiver<()>,
) -> Result<Child, LauncherError> {
// All shard started
// Start webserver
tracing::info!("Starting Webserver");
let mut router_args = vec![
"--max-client-batch-size".to_string(),
args.max_client_batch_size.to_string(),
"--max-concurrent-requests".to_string(),
args.max_concurrent_requests.to_string(),
"--max-best-of".to_string(),
args.max_best_of.to_string(),
"--max-stop-sequences".to_string(),
args.max_stop_sequences.to_string(),
"--max-top-n-tokens".to_string(),
args.max_top_n_tokens.to_string(),
"--max-input-tokens".to_string(),
max_input_tokens.to_string(),
"--max-total-tokens".to_string(),
max_total_tokens.to_string(),
"--max-batch-prefill-tokens".to_string(),
max_batch_prefill_tokens.to_string(),
"--waiting-served-ratio".to_string(),
args.waiting_served_ratio.to_string(),
"--max-waiting-tokens".to_string(),
args.max_waiting_tokens.to_string(),
"--validation-workers".to_string(),
args.validation_workers.to_string(),
"--hostname".to_string(),
args.hostname.to_string(),
"--port".to_string(),
args.port.to_string(),
"--master-shard-uds-path".to_string(),
format!("{}-0", args.shard_uds_path),
"--tokenizer-name".to_string(),
args.model_id,
];
// Pass usage stats flags to router
router_args.push("--usage-stats".to_string());
router_args.push(args.usage_stats.to_string());
// Grammar support
if args.disable_grammar_support {
router_args.push("--disable-grammar-support".to_string());
}
// Tokenizer config path
if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
router_args.push("--tokenizer-config-path".to_string());
router_args.push(tokenizer_config_path.to_string());
}
// Model optional max batch total tokens
if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
router_args.push("--max-batch-total-tokens".to_string());
router_args.push(max_batch_total_tokens.to_string());
}
// Router optional max batch size
if let Some(max_batch_size) = args.max_batch_size {
router_args.push("--max-batch-size".to_string());
router_args.push(max_batch_size.to_string());
}
// Model optional revision
if let Some(ref revision) = args.revision {
router_args.push("--revision".to_string());
router_args.push(revision.to_string())
}
if args.json_output {
router_args.push("--json-output".to_string());
}
// OpenTelemetry
if let Some(otlp_endpoint) = args.otlp_endpoint {
router_args.push("--otlp-endpoint".to_string());
router_args.push(otlp_endpoint);
}
// OpenTelemetry
let otlp_service_name = args.otlp_service_name;
router_args.push("--otlp-service-name".to_string());
router_args.push(otlp_service_name);
// CORS origins
for origin in args.cors_allow_origin.into_iter() {
router_args.push("--cors-allow-origin".to_string());
router_args.push(origin);
}
// API Key
if let Some(api_key) = args.api_key {
router_args.push("--api-key".to_string());
router_args.push(api_key);
}
// Ngrok
if args.ngrok {
router_args.push("--ngrok".to_string());
router_args.push("--ngrok-authtoken".to_string());
router_args.push(args.ngrok_authtoken.unwrap());
router_args.push("--ngrok-edge".to_string());
router_args.push(args.ngrok_edge.unwrap());
}
// Copy current process env
let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
// Parse Inference API token
if let Ok(api_token) = env::var("HF_API_TOKEN") {
envs.push(("HF_TOKEN".into(), api_token.into()))
};
// Parse Compute type
if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
} else if let Some(compute_type) = compute_type(num_shard) {
envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
}
let mut webserver = match Command::new("text-generation-router")
.args(router_args)
.envs(envs)
.stdout(Stdio::piped())
.stderr(Stdio::piped())
.process_group(0)
.spawn()
{
Ok(p) => p,
Err(err) => {
tracing::error!("Failed to start webserver: {}", err);
if err.kind() == io::ErrorKind::NotFound {
tracing::error!("text-generation-router not found in PATH");
tracing::error!("Please install it with `make install-router`")
} else {
tracing::error!("{}", err);
}
shutdown_shards(shutdown, shutdown_receiver);
return Err(LauncherError::WebserverCannotStart);
}
};
// Redirect STDOUT and STDERR to the console
let webserver_stdout = webserver.stdout.take().unwrap();
let webserver_stderr = webserver.stderr.take().unwrap();
thread::spawn(move || {
let stdout = BufReader::new(webserver_stdout);
let stderr = BufReader::new(webserver_stderr);
for line in stdout.lines() {
println!("{}", line.unwrap());
}
for line in stderr.lines() {
println!("{}", line.unwrap());
}
});
Ok(webserver)
}
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
tracing::info!("Terminating {process_name}");
let terminate_time = Instant::now();
signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();
tracing::info!("Waiting for {process_name} to gracefully shutdown");
while terminate_time.elapsed() < timeout {
if let Some(status) = process.try_wait()? {
tracing::info!("{process_name} terminated");
return Ok(status);
}
sleep(Duration::from_millis(100));
}
tracing::info!("Killing {process_name}");
process.kill()?;
let exit_status = process.wait()?;
tracing::info!("{process_name} killed");
Ok(exit_status)
}
fn main() -> Result<(), LauncherError> {
// Pattern match configuration
let args: Args = Args::parse();
// Filter events with LOG_LEVEL
let varname = "LOG_LEVEL";
let env_filter = if let Ok(log_level) = std::env::var(varname) {
// Override to avoid simple logs to be spammed with tokio level informations
let log_level = match &log_level[..] {
"warn" => "text_generation_launcher=warn,text_generation_router=warn",
"info" => "text_generation_launcher=info,text_generation_router=info",
"debug" => "text_generation_launcher=debug,text_generation_router=debug",
log_level => log_level,
};
EnvFilter::builder()
.with_default_directive(LevelFilter::INFO.into())
.parse_lossy(log_level)
} else {
EnvFilter::new("info")
};
let max_log_level = env_filter.max_level_hint().unwrap_or(LevelFilter::INFO);
if args.json_output {
tracing_subscriber::fmt()
.with_env_filter(env_filter)
.json()
.init();
} else {
tracing_subscriber::fmt()
.with_env_filter(env_filter)
.compact()
.init();
}
if args.env {
let env_runtime = env_runtime::Env::new();
tracing::info!("{}", env_runtime);
}
tracing::info!("{:#?}", args);
let config: Option<Config> = get_config(&args.model_id, &args.revision).ok();
let quantize = config.as_ref().and_then(|c| c.quantize);
// Quantization usually means you're even more RAM constrained.
let max_default = 4096;
let max_position_embeddings = if let Some(config) = &config {
if let Some(max_position_embeddings) = config.max_position_embeddings {
if max_position_embeddings > max_default {
let max = max_position_embeddings;
if args.max_input_tokens.is_none()
&& args.max_total_tokens.is_none()
&& args.max_batch_prefill_tokens.is_none()
{
tracing::info!("Model supports up to {max} but tgi will now set its default to {max_default} instead. This is to save VRAM by refusing large prompts in order to allow more users on the same hardware. You can increase that size using `--max-batch-prefill-tokens={} --max-total-tokens={max} --max-input-tokens={}`.", max + 50, max - 1);
}
max_default
} else {
max_position_embeddings
}
} else {
max_default
}
} else {
max_default
};
let (prefix_caching, attention) = resolve_attention(&config, &args.lora_adapters);
tracing::info!("Using attention {attention} - Prefix caching {prefix_caching}");
std::env::set_var("USE_PREFIX_CACHING", prefix_caching);
std::env::set_var("ATTENTION", attention);
let max_input_tokens = {
match (args.max_input_tokens, args.max_input_length) {
(Some(max_input_tokens), Some(max_input_length)) => {
return Err(LauncherError::ArgumentValidation(
format!("Both `max_input_tokens` ({max_input_tokens}) and `max_input_length` ({max_input_length}) are set. Please define only `max_input_tokens` as `max_input_length is deprecated for naming consistency.",
)));
}
(Some(max_input_tokens), None) | (None, Some(max_input_tokens)) => max_input_tokens,
(None, None) => {
let value = max_position_embeddings - 1;
tracing::info!("Default `max_input_tokens` to {value}");
value
}
}
};
let max_total_tokens = {
match args.max_total_tokens {
Some(max_total_tokens) => max_total_tokens,
None => {
let value = max_position_embeddings;
tracing::info!("Default `max_total_tokens` to {value}");
value
}
}
};
let max_batch_prefill_tokens = {
match args.max_batch_prefill_tokens {
Some(max_batch_prefill_tokens) => max_batch_prefill_tokens,
None => {
let value: u32 = if let Some(max_batch_size) = args.max_batch_size {
max_batch_size * max_input_tokens
} else {
// Adding some edge in order to account for potential block_size alignement
// issue.
max_input_tokens + 50
} as u32;
tracing::info!("Default `max_batch_prefill_tokens` to {value}");
value
}
}
};
// Validate args
if max_input_tokens >= max_total_tokens {
return Err(LauncherError::ArgumentValidation(
"`max_input_tokens must be < `max_total_tokens`".to_string(),
));
}
if max_input_tokens as u32 > max_batch_prefill_tokens {
return Err(LauncherError::ArgumentValidation(format!(
"`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {} and {}",
max_batch_prefill_tokens, max_input_tokens
)));
}
if matches!(args.quantize, Some(Quantization::Bitsandbytes)) {
tracing::warn!("Bitsandbytes is deprecated, use `eetq` instead, which provides better latencies overall and is drop-in in most cases.");
}
let quantize = args.quantize.or(quantize);
let cuda_graphs = match (&args.cuda_graphs, &quantize) {
(Some(cuda_graphs), _) => cuda_graphs.iter().cloned().filter(|&c| c > 0).collect(),
#[allow(deprecated)]
(
None,
Some(
Quantization::Bitsandbytes
| Quantization::BitsandbytesNf4
| Quantization::BitsandbytesFp4,
),
) => {
tracing::warn!("Bitsandbytes doesn't work with cuda graphs, deactivating them");
vec![]
}
(None, Some(Quantization::Exl2)) => {
tracing::warn!("Exl2 doesn't work with cuda graphs, deactivating them");
vec![]
}
_ => {
let cuda_graphs = vec![1, 2, 4, 8, 16, 32];
tracing::info!("Using default cuda graphs {cuda_graphs:?}");
cuda_graphs
}
};
if args.validation_workers == 0 {
return Err(LauncherError::ArgumentValidation(
"`validation_workers` must be > 0".to_string(),
));
}
if args.trust_remote_code {
tracing::warn!(
"`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
args.model_id
);
}
let num_shard = find_num_shards(args.sharded, args.num_shard)?;
if num_shard > 1 {
if matches!(args.quantize, Some(Quantization::Exl2)) {
return Err(LauncherError::ArgumentValidation(
"Sharding is currently not supported with `exl2` quantization".into(),
));
}
tracing::info!("Sharding model on {num_shard} processes");
}
if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
if max_batch_prefill_tokens > *max_batch_total_tokens {
return Err(LauncherError::ArgumentValidation(format!(
"`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
max_batch_prefill_tokens, max_batch_total_tokens
)));
}
if max_total_tokens as u32 > *max_batch_total_tokens {
return Err(LauncherError::ArgumentValidation(format!(
"`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
max_total_tokens, max_batch_total_tokens
)));
}
}
if args.ngrok {
if args.ngrok_authtoken.is_none() {
return Err(LauncherError::ArgumentValidation(
"`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
));
}
if args.ngrok_edge.is_none() {
return Err(LauncherError::ArgumentValidation(
"`ngrok-edge` must be set when using ngrok tunneling".to_string(),
));
}
}
// Signal handler
let running = Arc::new(AtomicBool::new(true));
let r = running.clone();
ctrlc::set_handler(move || {
r.store(false, Ordering::SeqCst);
})
.expect("Error setting Ctrl-C handler");
// Download and convert model weights
download_convert_model(
&args.model_id,
args.revision.as_deref(),
args.trust_remote_code,
args.huggingface_hub_cache.as_deref(),
args.weights_cache_override.as_deref(),
running.clone(),
)?;
// Download and convert lora adapters if any
if let Some(lora_adapters) = &args.lora_adapters {
for adapter in lora_adapters.split(',') {
// skip download if a path is provided
if adapter.contains('=') {
continue;
}
download_convert_model(
adapter,
None,
args.trust_remote_code,
args.huggingface_hub_cache.as_deref(),
args.weights_cache_override.as_deref(),
running.clone(),
)?;
}
}
if !running.load(Ordering::SeqCst) {
// Launcher was asked to stop
return Ok(());
}
// Shared shutdown bool
let shutdown = Arc::new(AtomicBool::new(false));
// Shared shutdown channel
// When shutting down, the main thread will wait for all senders to be dropped
let (shutdown_sender, shutdown_receiver) = mpsc::channel();
// Shared channel to track shard status
let (status_sender, status_receiver) = mpsc::channel();
spawn_shards(
num_shard,
&args,
cuda_graphs,
max_total_tokens,
max_input_tokens,
quantize,
max_log_level,
shutdown.clone(),
&shutdown_receiver,
shutdown_sender,
&status_receiver,
status_sender,
running.clone(),
)?;
// We might have received a termination signal
if !running.load(Ordering::SeqCst) {
shutdown_shards(shutdown, &shutdown_receiver);
return Ok(());
}
let mut webserver = spawn_webserver(
num_shard,
args,
max_input_tokens,
max_total_tokens,
max_batch_prefill_tokens,
shutdown.clone(),
&shutdown_receiver,
)
.inspect_err(|_| {
shutdown_shards(shutdown.clone(), &shutdown_receiver);
})?;
// Default exit code
let mut exit_code = Ok(());
while running.load(Ordering::SeqCst) {
if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
tracing::error!("Shard {rank} crashed");
exit_code = Err(LauncherError::ShardFailed);
break;
};
match webserver.try_wait().unwrap() {
Some(_) => {
tracing::error!("Webserver Crashed");
shutdown_shards(shutdown, &shutdown_receiver);
return Err(LauncherError::WebserverFailed);
}
None => {
sleep(Duration::from_millis(100));
}
};
}
// Graceful termination
terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
shutdown_shards(shutdown, &shutdown_receiver);
exit_code
}