502 lines
16 KiB
Python
502 lines
16 KiB
Python
import sys
|
|
import subprocess
|
|
import contextlib
|
|
import pytest
|
|
import asyncio
|
|
import os
|
|
import docker
|
|
import json
|
|
import math
|
|
import shutil
|
|
import tempfile
|
|
import time
|
|
import random
|
|
|
|
from docker.errors import NotFound
|
|
from typing import Optional, List, Dict
|
|
from syrupy.extensions.json import JSONSnapshotExtension
|
|
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
|
|
|
|
from text_generation import AsyncClient
|
|
from text_generation.types import (
|
|
Response,
|
|
Details,
|
|
InputToken,
|
|
Token,
|
|
BestOfSequence,
|
|
Grammar,
|
|
ChatComplete,
|
|
ChatCompletionChunk,
|
|
ChatCompletionComplete,
|
|
Completion,
|
|
)
|
|
|
|
DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
|
|
HUGGING_FACE_HUB_TOKEN = os.getenv("HUGGING_FACE_HUB_TOKEN", None)
|
|
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data")
|
|
|
|
|
|
class ResponseComparator(JSONSnapshotExtension):
|
|
rtol = 0.2
|
|
|
|
def serialize(
|
|
self,
|
|
data,
|
|
*,
|
|
exclude=None,
|
|
matcher=None,
|
|
):
|
|
if (
|
|
isinstance(data, Response)
|
|
or isinstance(data, ChatComplete)
|
|
or isinstance(data, ChatCompletionChunk)
|
|
or isinstance(data, ChatCompletionComplete)
|
|
):
|
|
data = data.model_dump()
|
|
|
|
if isinstance(data, List):
|
|
data = [d.model_dump() for d in data]
|
|
|
|
data = self._filter(
|
|
data=data, depth=0, path=(), exclude=exclude, matcher=matcher
|
|
)
|
|
return json.dumps(data, indent=2, ensure_ascii=False, sort_keys=False) + "\n"
|
|
|
|
def matches(
|
|
self,
|
|
*,
|
|
serialized_data,
|
|
snapshot_data,
|
|
) -> bool:
|
|
def convert_data(data):
|
|
data = json.loads(data)
|
|
if isinstance(data, Dict) and "choices" in data:
|
|
choices = data["choices"]
|
|
if isinstance(choices, List) and len(choices) >= 1:
|
|
if "delta" in choices[0]:
|
|
return ChatCompletionChunk(**data)
|
|
if "text" in choices[0]:
|
|
return Completion(**data)
|
|
return ChatComplete(**data)
|
|
|
|
if isinstance(data, Dict):
|
|
return Response(**data)
|
|
if isinstance(data, List):
|
|
if (
|
|
len(data) > 0
|
|
and "object" in data[0]
|
|
and data[0]["object"] == "text_completion"
|
|
):
|
|
return [Completion(**d) for d in data]
|
|
return [Response(**d) for d in data]
|
|
raise NotImplementedError
|
|
|
|
def eq_token(token: Token, other: Token) -> bool:
|
|
return (
|
|
token.id == other.id
|
|
and token.text == other.text
|
|
and math.isclose(token.logprob, other.logprob, rel_tol=self.rtol)
|
|
and token.special == other.special
|
|
)
|
|
|
|
def eq_prefill_token(prefill_token: InputToken, other: InputToken) -> bool:
|
|
try:
|
|
return (
|
|
prefill_token.id == other.id
|
|
and prefill_token.text == other.text
|
|
and (
|
|
math.isclose(
|
|
prefill_token.logprob, other.logprob, rel_tol=self.rtol
|
|
)
|
|
if prefill_token.logprob is not None
|
|
else prefill_token.logprob == other.logprob
|
|
)
|
|
)
|
|
except TypeError:
|
|
return False
|
|
|
|
def eq_best_of(details: BestOfSequence, other: BestOfSequence) -> bool:
|
|
return (
|
|
details.finish_reason == other.finish_reason
|
|
and details.generated_tokens == other.generated_tokens
|
|
and details.seed == other.seed
|
|
and len(details.prefill) == len(other.prefill)
|
|
and all(
|
|
[
|
|
eq_prefill_token(d, o)
|
|
for d, o in zip(details.prefill, other.prefill)
|
|
]
|
|
)
|
|
and len(details.tokens) == len(other.tokens)
|
|
and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
|
|
)
|
|
|
|
def eq_details(details: Details, other: Details) -> bool:
|
|
return (
|
|
details.finish_reason == other.finish_reason
|
|
and details.generated_tokens == other.generated_tokens
|
|
and details.seed == other.seed
|
|
and len(details.prefill) == len(other.prefill)
|
|
and all(
|
|
[
|
|
eq_prefill_token(d, o)
|
|
for d, o in zip(details.prefill, other.prefill)
|
|
]
|
|
)
|
|
and len(details.tokens) == len(other.tokens)
|
|
and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
|
|
and (
|
|
len(details.best_of_sequences)
|
|
if details.best_of_sequences is not None
|
|
else 0
|
|
)
|
|
== (
|
|
len(other.best_of_sequences)
|
|
if other.best_of_sequences is not None
|
|
else 0
|
|
)
|
|
and (
|
|
all(
|
|
[
|
|
eq_best_of(d, o)
|
|
for d, o in zip(
|
|
details.best_of_sequences, other.best_of_sequences
|
|
)
|
|
]
|
|
)
|
|
if details.best_of_sequences is not None
|
|
else details.best_of_sequences == other.best_of_sequences
|
|
)
|
|
)
|
|
|
|
def eq_completion(response: Completion, other: Completion) -> bool:
|
|
return response.choices[0].text == other.choices[0].text
|
|
|
|
def eq_chat_complete(response: ChatComplete, other: ChatComplete) -> bool:
|
|
return (
|
|
response.choices[0].message.content == other.choices[0].message.content
|
|
)
|
|
|
|
def eq_chat_complete_chunk(
|
|
response: ChatCompletionChunk, other: ChatCompletionChunk
|
|
) -> bool:
|
|
return response.choices[0].delta.content == other.choices[0].delta.content
|
|
|
|
def eq_response(response: Response, other: Response) -> bool:
|
|
return response.generated_text == other.generated_text and eq_details(
|
|
response.details, other.details
|
|
)
|
|
|
|
serialized_data = convert_data(serialized_data)
|
|
snapshot_data = convert_data(snapshot_data)
|
|
|
|
if not isinstance(serialized_data, List):
|
|
serialized_data = [serialized_data]
|
|
if not isinstance(snapshot_data, List):
|
|
snapshot_data = [snapshot_data]
|
|
|
|
if isinstance(serialized_data[0], Completion):
|
|
return len(snapshot_data) == len(serialized_data) and all(
|
|
[eq_completion(r, o) for r, o in zip(serialized_data, snapshot_data)]
|
|
)
|
|
|
|
if isinstance(serialized_data[0], ChatComplete):
|
|
return len(snapshot_data) == len(serialized_data) and all(
|
|
[eq_chat_complete(r, o) for r, o in zip(serialized_data, snapshot_data)]
|
|
)
|
|
|
|
if isinstance(serialized_data[0], ChatCompletionChunk):
|
|
return len(snapshot_data) == len(serialized_data) and all(
|
|
[
|
|
eq_chat_complete_chunk(r, o)
|
|
for r, o in zip(serialized_data, snapshot_data)
|
|
]
|
|
)
|
|
|
|
return len(snapshot_data) == len(serialized_data) and all(
|
|
[eq_response(r, o) for r, o in zip(serialized_data, snapshot_data)]
|
|
)
|
|
|
|
|
|
class GenerousResponseComparator(ResponseComparator):
|
|
# Needed for GPTQ with exllama which has serious numerical fluctuations.
|
|
rtol = 0.75
|
|
|
|
|
|
class LauncherHandle:
|
|
def __init__(self, port: int):
|
|
self.client = AsyncClient(f"http://localhost:{port}")
|
|
|
|
def _inner_health(self):
|
|
raise NotImplementedError
|
|
|
|
async def health(self, timeout: int = 60):
|
|
assert timeout > 0
|
|
for _ in range(timeout):
|
|
if not self._inner_health():
|
|
raise RuntimeError("Launcher crashed")
|
|
|
|
try:
|
|
await self.client.generate("test")
|
|
return
|
|
except (ClientConnectorError, ClientOSError, ServerDisconnectedError) as e:
|
|
time.sleep(1)
|
|
raise RuntimeError("Health check failed")
|
|
|
|
|
|
class ContainerLauncherHandle(LauncherHandle):
|
|
def __init__(self, docker_client, container_name, port: int):
|
|
super(ContainerLauncherHandle, self).__init__(port)
|
|
self.docker_client = docker_client
|
|
self.container_name = container_name
|
|
|
|
def _inner_health(self) -> bool:
|
|
container = self.docker_client.containers.get(self.container_name)
|
|
return container.status in ["running", "created"]
|
|
|
|
|
|
class ProcessLauncherHandle(LauncherHandle):
|
|
def __init__(self, process, port: int):
|
|
super(ProcessLauncherHandle, self).__init__(port)
|
|
self.process = process
|
|
|
|
def _inner_health(self) -> bool:
|
|
return self.process.poll() is None
|
|
|
|
|
|
@pytest.fixture
|
|
def response_snapshot(snapshot):
|
|
return snapshot.use_extension(ResponseComparator)
|
|
|
|
|
|
@pytest.fixture
|
|
def generous_response_snapshot(snapshot):
|
|
return snapshot.use_extension(GenerousResponseComparator)
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def event_loop():
|
|
loop = asyncio.get_event_loop()
|
|
yield loop
|
|
loop.close()
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def launcher(event_loop):
|
|
@contextlib.contextmanager
|
|
def local_launcher(
|
|
model_id: str,
|
|
num_shard: Optional[int] = None,
|
|
quantize: Optional[str] = None,
|
|
trust_remote_code: bool = False,
|
|
use_flash_attention: bool = True,
|
|
disable_grammar_support: bool = False,
|
|
dtype: Optional[str] = None,
|
|
revision: Optional[str] = None,
|
|
max_input_length: Optional[int] = None,
|
|
max_batch_prefill_tokens: Optional[int] = None,
|
|
max_total_tokens: Optional[int] = None,
|
|
):
|
|
port = random.randint(8000, 10_000)
|
|
master_port = random.randint(10_000, 20_000)
|
|
|
|
shard_uds_path = (
|
|
f"/tmp/tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}-server"
|
|
)
|
|
|
|
args = [
|
|
"text-generation-launcher",
|
|
"--model-id",
|
|
model_id,
|
|
"--port",
|
|
str(port),
|
|
"--master-port",
|
|
str(master_port),
|
|
"--shard-uds-path",
|
|
shard_uds_path,
|
|
]
|
|
|
|
env = os.environ
|
|
|
|
if disable_grammar_support:
|
|
args.append("--disable-grammar-support")
|
|
if num_shard is not None:
|
|
args.extend(["--num-shard", str(num_shard)])
|
|
if quantize is not None:
|
|
args.append("--quantize")
|
|
args.append(quantize)
|
|
if dtype is not None:
|
|
args.append("--dtype")
|
|
args.append(dtype)
|
|
if revision is not None:
|
|
args.append("--revision")
|
|
args.append(revision)
|
|
if trust_remote_code:
|
|
args.append("--trust-remote-code")
|
|
if max_input_length:
|
|
args.append("--max-input-length")
|
|
args.append(str(max_input_length))
|
|
if max_batch_prefill_tokens:
|
|
args.append("--max-batch-prefill-tokens")
|
|
args.append(str(max_batch_prefill_tokens))
|
|
if max_total_tokens:
|
|
args.append("--max-total-tokens")
|
|
args.append(str(max_total_tokens))
|
|
|
|
env["LOG_LEVEL"] = "info,text_generation_router=debug"
|
|
|
|
if not use_flash_attention:
|
|
env["USE_FLASH_ATTENTION"] = "false"
|
|
|
|
with tempfile.TemporaryFile("w+") as tmp:
|
|
# We'll output stdout/stderr to a temporary file. Using a pipe
|
|
# cause the process to block until stdout is read.
|
|
with subprocess.Popen(
|
|
args,
|
|
stdout=tmp,
|
|
stderr=subprocess.STDOUT,
|
|
env=env,
|
|
) as process:
|
|
yield ProcessLauncherHandle(process, port)
|
|
|
|
process.terminate()
|
|
process.wait(60)
|
|
|
|
tmp.seek(0)
|
|
shutil.copyfileobj(tmp, sys.stderr)
|
|
|
|
if not use_flash_attention:
|
|
del env["USE_FLASH_ATTENTION"]
|
|
|
|
@contextlib.contextmanager
|
|
def docker_launcher(
|
|
model_id: str,
|
|
num_shard: Optional[int] = None,
|
|
quantize: Optional[str] = None,
|
|
trust_remote_code: bool = False,
|
|
use_flash_attention: bool = True,
|
|
disable_grammar_support: bool = False,
|
|
dtype: Optional[str] = None,
|
|
revision: Optional[str] = None,
|
|
max_input_length: Optional[int] = None,
|
|
max_batch_prefill_tokens: Optional[int] = None,
|
|
max_total_tokens: Optional[int] = None,
|
|
):
|
|
port = random.randint(8000, 10_000)
|
|
|
|
args = ["--model-id", model_id, "--env"]
|
|
|
|
if disable_grammar_support:
|
|
args.append("--disable-grammar-support")
|
|
if num_shard is not None:
|
|
args.extend(["--num-shard", str(num_shard)])
|
|
if quantize is not None:
|
|
args.append("--quantize")
|
|
args.append(quantize)
|
|
if dtype is not None:
|
|
args.append("--dtype")
|
|
args.append(dtype)
|
|
if revision is not None:
|
|
args.append("--revision")
|
|
args.append(revision)
|
|
if trust_remote_code:
|
|
args.append("--trust-remote-code")
|
|
if max_input_length:
|
|
args.append("--max-input-length")
|
|
args.append(str(max_input_length))
|
|
if max_batch_prefill_tokens:
|
|
args.append("--max-batch-prefill-tokens")
|
|
args.append(str(max_batch_prefill_tokens))
|
|
if max_total_tokens:
|
|
args.append("--max-total-tokens")
|
|
args.append(str(max_total_tokens))
|
|
|
|
client = docker.from_env()
|
|
|
|
container_name = f"tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}"
|
|
|
|
try:
|
|
container = client.containers.get(container_name)
|
|
container.stop()
|
|
container.wait()
|
|
except NotFound:
|
|
pass
|
|
|
|
gpu_count = num_shard if num_shard is not None else 1
|
|
|
|
env = {
|
|
"LOG_LEVEL": "info,text_generation_router=debug",
|
|
}
|
|
if not use_flash_attention:
|
|
env["USE_FLASH_ATTENTION"] = "false"
|
|
|
|
if HUGGING_FACE_HUB_TOKEN is not None:
|
|
env["HUGGING_FACE_HUB_TOKEN"] = HUGGING_FACE_HUB_TOKEN
|
|
|
|
volumes = []
|
|
if DOCKER_VOLUME:
|
|
volumes = [f"{DOCKER_VOLUME}:/data"]
|
|
|
|
container = client.containers.run(
|
|
DOCKER_IMAGE,
|
|
command=args,
|
|
name=container_name,
|
|
environment=env,
|
|
auto_remove=False,
|
|
detach=True,
|
|
device_requests=[
|
|
docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
|
|
],
|
|
volumes=volumes,
|
|
ports={"80/tcp": port},
|
|
shm_size="1G",
|
|
)
|
|
|
|
yield ContainerLauncherHandle(client, container.name, port)
|
|
|
|
if not use_flash_attention:
|
|
del env["USE_FLASH_ATTENTION"]
|
|
|
|
try:
|
|
container.stop()
|
|
container.wait()
|
|
except NotFound:
|
|
pass
|
|
|
|
container_output = container.logs().decode("utf-8")
|
|
print(container_output, file=sys.stderr)
|
|
|
|
container.remove()
|
|
|
|
if DOCKER_IMAGE is not None:
|
|
return docker_launcher
|
|
return local_launcher
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def generate_load():
|
|
async def generate_load_inner(
|
|
client: AsyncClient,
|
|
prompt: str,
|
|
max_new_tokens: int,
|
|
n: int,
|
|
seed: Optional[int] = None,
|
|
grammar: Optional[Grammar] = None,
|
|
stop_sequences: Optional[List[str]] = None,
|
|
) -> List[Response]:
|
|
futures = [
|
|
client.generate(
|
|
prompt,
|
|
max_new_tokens=max_new_tokens,
|
|
decoder_input_details=True,
|
|
seed=seed,
|
|
grammar=grammar,
|
|
stop_sequences=stop_sequences,
|
|
)
|
|
for _ in range(n)
|
|
]
|
|
|
|
return await asyncio.gather(*futures)
|
|
|
|
return generate_load_inner
|