136 lines
5.4 KiB
C++
136 lines
5.4 KiB
C++
//
|
|
// Created by Morgan Funtowicz on 9/28/2024.
|
|
//
|
|
|
|
#include <filesystem>
|
|
|
|
#include <ggml.h>
|
|
#include <llama.h>
|
|
#include <spdlog/fmt/chrono.h>
|
|
#include <spdlog/spdlog.h>
|
|
|
|
#include "backend.hpp"
|
|
|
|
namespace huggingface::tgi::backends::llamacpp {
|
|
|
|
llama_sampler_ptr sampling_params_t::into_llama_sampler(const llama_model *model) const {
|
|
auto *pSampler = llama_sampler_chain_init({.no_perf = false});
|
|
|
|
// Penalties
|
|
llama_sampler_chain_add(pSampler, llama_sampler_init_penalties(
|
|
llama_n_vocab(model),
|
|
llama_token_eos(model),
|
|
llama_token_nl(model),
|
|
0.0f,
|
|
repetition_penalty,
|
|
frequency_penalty,
|
|
0.0f,
|
|
false,
|
|
false
|
|
));
|
|
|
|
if (top_k > 0) {
|
|
llama_sampler_chain_add(pSampler, llama_sampler_init_top_k(static_cast<int32_t>(top_k)));
|
|
}
|
|
|
|
if (0 < top_p && top_p < 1) {
|
|
llama_sampler_chain_add(pSampler, llama_sampler_init_top_p(top_p, 1));
|
|
}
|
|
|
|
llama_sampler_chain_add(pSampler, llama_sampler_init_dist(seed));
|
|
return {pSampler, llama_sampler_deleter};
|
|
}
|
|
|
|
|
|
std::expected<llama_batch, backend_error_t> get_batch_from_prompt(std::span<llama_token> prompt) {
|
|
auto batch = llama_batch_init(static_cast<int32_t>(prompt.size()), 0, 1);
|
|
std::for_each(prompt.begin(), prompt.end(), [&batch](const llama_token token) {
|
|
const auto n_token = batch.n_tokens;
|
|
|
|
batch.token[n_token] = token;
|
|
batch.pos[n_token] = n_token;
|
|
batch.n_seq_id[n_token] = 1;
|
|
batch.seq_id[n_token][0] = 1;
|
|
batch.logits[n_token] = false;
|
|
batch.n_tokens++;
|
|
});
|
|
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
return batch;
|
|
}
|
|
|
|
void update_batch_for_decoding(llama_batch &batch, llama_token token, size_t position) {
|
|
batch.n_tokens = 1;
|
|
batch.logits[0] = true;
|
|
batch.token[0] = token;
|
|
batch.pos[0] = static_cast<int32_t>(position);
|
|
}
|
|
|
|
worker_t::worker_t(std::shared_ptr<llama_model> model, const llama_context_params &¶ms)
|
|
: model_(model), context_(llama_new_context_with_model(model_.get(), params)) {
|
|
|
|
#ifdef TGI_LLAMACPP_BACKEND_DEBUG
|
|
char modelName[256];
|
|
llama_model_meta_val_str(model.get(), "general.name", modelName, sizeof(modelName));
|
|
SPDLOG_DEBUG(FMT_STRING("Created llama.cpp backend for model: '{}'"), std::string_view(modelName));
|
|
#endif
|
|
}
|
|
|
|
std::expected<size_t, backend_error_t>
|
|
worker_t::generate(const generation_context_t &generation_context,
|
|
const std::optional<llama_decode_callback> &callback) const {
|
|
// Store information about context and generation size
|
|
const auto callback_ = callback.value_or(llama_void_callback);
|
|
auto max_new_tokens = generation_context.generation_params.max_new_tokens;
|
|
|
|
// Convert sampling params to what llama.cpp is looking for
|
|
auto sampler = generation_context.sampling_params.into_llama_sampler(model_.get());
|
|
|
|
// Set up the prompt
|
|
if (auto maybe_batch = get_batch_from_prompt(generation_context.input_tokens); maybe_batch.has_value()) {
|
|
// Decode
|
|
auto batch = *maybe_batch;
|
|
auto n_decoded_tokens = 0;
|
|
const auto prompt_size = generation_context.input_tokens.size();
|
|
for (bool generating = true; generating; ++n_decoded_tokens) {
|
|
|
|
#ifdef TGI_LLAMACPP_BACKEND_DEBUG
|
|
const auto start = std::chrono::steady_clock::now();
|
|
const auto status = llama_decode(context_.get(), batch);
|
|
const auto end = std::chrono::steady_clock::now();
|
|
const auto latency = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
|
|
SPDLOG_DEBUG(FMT_STRING("Successfully decoded {:d} token(s) in {}"), batch.n_tokens, latency);
|
|
#else
|
|
const auto status = llama_decode(context_.get(), batch);
|
|
#endif
|
|
batch.n_tokens = 0;
|
|
if (LLAMA_SUCCESS(status)) [[likely]] {
|
|
// Sample the new token
|
|
auto new_token_id = llama_sampler_sample(sampler.get(), context_.get(), -1);
|
|
const auto is_eog = llama_token_is_eog(model_.get(), new_token_id);
|
|
const auto new_token_logits = llama_get_logits_ith(context_.get(), -1); // TODO: return logit
|
|
|
|
// Handle termination cases
|
|
const bool has_reach_max_tokens = n_decoded_tokens >= max_new_tokens - 1;
|
|
const bool has_reach_eog = !generation_context.generation_params.ignore_eos_token & is_eog;
|
|
const bool is_final = has_reach_max_tokens | has_reach_eog;
|
|
|
|
// Bubble up the generated token if a callback is provided
|
|
const auto should_stop = callback_(new_token_id, *new_token_logits, is_final, n_decoded_tokens + 1);
|
|
|
|
// Compute the continuation flag
|
|
generating = !(should_stop | is_final);
|
|
|
|
// Update the batch for the next generation
|
|
update_batch_for_decoding(batch, new_token_id, prompt_size + n_decoded_tokens);
|
|
}
|
|
}
|
|
|
|
llama_batch_free(batch);
|
|
|
|
return n_decoded_tokens;
|
|
} else {
|
|
return maybe_batch.error();
|
|
}
|
|
}
|
|
} |