hf_text-generation-inference/server/text_generation_server/layers/linear.py

105 lines
3.0 KiB
Python

from typing import Optional
import torch
from text_generation_server.utils.import_utils import SYSTEM
from torch.nn import functional as F
if SYSTEM == "rocm":
try:
from vllm import _custom_C
except Exception as e:
raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")
class FastLinear(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
self.weight = torch.nn.Parameter(weight, requires_grad=False)
if bias is not None:
self.bias = torch.nn.Parameter(bias, requires_grad=False)
else:
self.bias = None
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_tensor(f"{prefix}.weight")
if bias:
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(weight, bias)
def forward(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self.weight, self.bias)
class FastLinearROCm(torch.nn.Module):
def __init__(
self,
weight,
bias,
) -> None:
super().__init__()
self.weight = torch.nn.Parameter(weight)
if bias is not None:
self.bias = torch.nn.Parameter(bias)
else:
self.bias = None
@classmethod
def load(cls, config, prefix: str, weights, bias: bool):
weight = weights.get_tensor(f"{prefix}.weight")
if bias:
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return cls(weight, bias)
def forward(self, inp: torch.Tensor) -> torch.Tensor:
weight = self.weight
bias = self.bias
if SYSTEM == "rocm" and inp.numel() // inp.shape[-1] == 1:
batched = False
inp_shape = inp.shape
if inp.dim() == 3:
inp = inp.view(-1, inp_shape[-1])
batched = True
m, k = weight.shape[0], inp_shape[1]
out = torch.empty(
inp_shape[0], weight.shape[0], dtype=inp.dtype, device="cuda"
)
if (k == 8192 and (m == 1280 or m == 7168)) or (k == 3584 and m == 8192):
_custom_C.LLMM1(weight, inp, out, 8)
elif k <= 8192 and k % 8 == 0 and m % 4 == 0:
_custom_C.LLMM1(weight, inp, out, 4)
else:
out = F.linear(inp, weight)
if batched:
out.view(*inp_shape[:-1], out.shape[-1])
if bias is not None:
out = out + bias
return out
return F.linear(inp, self.weight, self.bias)
def get_linear(weight, bias):
# Weights that are loaded through methods that are not
# quantization-aware are still bare tensors. We may want
# to change this in the future.
if isinstance(weight, torch.Tensor):
if SYSTEM == "rocm":
return FastLinearROCm(weight, bias)
else:
return FastLinear(weight, bias)
return weight.get_linear(bias)