hf_text-generation-inference/server/text_generation_server/models/flash_santacoder.py

152 lines
5.8 KiB
Python

import torch
import torch.distributed
from accelerate import init_empty_weights
from opentelemetry import trace
from pathlib import Path
from transformers import AutoTokenizer, AutoConfig
from typing import Optional, List
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
FlashSantacoderForCausalLM,
)
from text_generation_server.utils import (
weight_files,
download_weights,
weight_hub_files,
LocalEntryNotFoundError,
)
tracer = trace.get_tracer(__name__)
class FlashSantacoder(FlashCausalLM):
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
else:
raise NotImplementedError("FlashSantacoder is only available on GPU")
if quantize:
raise NotImplementedError("FlashSantacoder does not support quantization")
tokenizer = AutoTokenizer.from_pretrained(
model_id, revision=revision, padding_side="left"
)
config = AutoConfig.from_pretrained(
model_id,
revision=revision,
trust_remote_code=True, # Needed as the config is not part of Transformers
)
# We do not use from_pretrained as we modified the model internal module layout
try:
filenames = weight_files(model_id, revision, ".bin")
# Local files not found
except LocalEntryNotFoundError:
hub_files = weight_hub_files(model_id, revision, ".bin")
filenames = download_weights(hub_files, model_id, revision)
with init_empty_weights():
model = FlashSantacoderForCausalLM(config)
self.load_weights(
model,
filenames,
)
self.model = model.eval().to(device).to(dtype)
super(FlashCausalLM, self).__init__(
tokenizer=tokenizer,
device=device,
)
@staticmethod
def load_weights(
model: FlashSantacoderForCausalLM,
filenames: List[Path],
):
for filename in filenames:
state_dict = torch.load(filename, map_location="cpu")
for key, value in state_dict.items():
layer_name = ".".join(key.split(".")[:4])
# Fused qkv
if "q_attn.weight" in key or "kv_attn.weight" in key:
final_key = layer_name + ".attn.weight"
elif "q_attn.bias" in key or "kv_attn.bias" in key:
final_key = layer_name + ".attn.bias"
else:
final_key = key
module_name, param_name = final_key.rsplit(".", 1)
module = model.get_submodule(module_name)
try:
current_parameter_tensor = module._parameters[param_name]
except KeyError:
current_parameter_tensor = None
if current_parameter_tensor is not None:
if (
"c_fc.weight" in key
or "c_proj.weight" in key
or "q_attn.weight" in key
or "kv_attn.weight" in key
):
# Tranpose as we use nn.Linear instead of Conv1D
value = value.T
if current_parameter_tensor.device == torch.device("meta"):
# Init qkv
if "attn.weight" in final_key:
module._parameters[param_name] = value.new_empty(
(
model.transformer.head_size
* (model.transformer.num_heads + 2),
value.shape[1],
)
)
elif "attn.bias" in final_key:
module._parameters[param_name] = value.new_empty(
(
model.transformer.head_size
* (model.transformer.num_heads + 2)
)
)
# Copy to correct slice
if "q_attn.weight" in key:
module._parameters[param_name][: value.shape[0]] = value
elif "q_attn.bias" in key:
module._parameters[param_name][: value.shape[0]] = value
elif "kv_attn.weight" in key:
module._parameters[param_name][
model.transformer.head_size * model.transformer.num_heads :
] = value
elif "kv_attn.bias" in key:
module._parameters[param_name][
model.transformer.head_size * model.transformer.num_heads :
] = value
else:
if current_parameter_tensor.shape != value.shape:
raise ValueError(
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
)
module._parameters[param_name] = value
else:
module._buffers[param_name] = value
torch.cuda.empty_cache()
model.post_load_weights()
def decode(self, generated_ids: List[int]) -> str:
# Do not skip special tokens as they are used for custom parsing rules of the generated text
return self.tokenizer.decode(
generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False
)