174 lines
5.0 KiB
Markdown
174 lines
5.0 KiB
Markdown
<div align="center">
|
|
|
|
# Text Generation Inference
|
|
|
|
<a href="https://github.com/huggingface/text-generation-inference">
|
|
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
|
|
</a>
|
|
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
|
|
<img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
|
|
</a>
|
|
<a href="https://huggingface.github.io/text-generation-inference">
|
|
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
|
|
</a>
|
|
|
|
![architecture](assets/architecture.jpg)
|
|
|
|
</div>
|
|
|
|
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
|
|
to power LLMs api-inference widgets.
|
|
|
|
## Table of contents
|
|
|
|
- [Features](#features)
|
|
- [Officially Supported Models](#officially-supported-models)
|
|
- [Get Started](#get-started)
|
|
- [Docker](#docker)
|
|
- [Local Install](#local-install)
|
|
- [OpenAPI](#api-documentation)
|
|
- [CUDA Kernels](#cuda-kernels)
|
|
- [Run BLOOM](#run-bloom)
|
|
- [Download](#download)
|
|
- [Run](#run)
|
|
- [Quantization](#quantization)
|
|
- [Develop](#develop)
|
|
- [Testing](#testing)
|
|
|
|
## Features
|
|
|
|
- Token streaming using Server Side Events (SSE)
|
|
- [Dynamic batching of incoming requests](https://github.com/huggingface/text-generation-inference/blob/main/router/src/batcher.rs#L88) for increased total throughput
|
|
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
|
|
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
|
|
- 45ms per token generation for BLOOM with 8xA100 80GB
|
|
- Logits warpers (temperature scaling, topk, repetition penalty ...)
|
|
- Stop sequences
|
|
- Log probabilities
|
|
|
|
## Officially supported models
|
|
|
|
- [BLOOM](https://huggingface.co/bigscience/bloom)
|
|
- [BLOOMZ](https://huggingface.co/bigscience/bloomz)
|
|
- [MT0-XXL](https://huggingface.co/bigscience/mt0-xxl)
|
|
- ~~[Galactica](https://huggingface.co/facebook/galactica-120b)~~ (deactivated)
|
|
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
|
|
- [GPT-Neox 20B](https://huggingface.co/EleutherAI/gpt-neox-20b): use `--revision pr/13`
|
|
|
|
Other models are supported on a best effort basis using:
|
|
|
|
`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
|
|
|
|
or
|
|
|
|
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
|
|
|
|
## Get started
|
|
|
|
### Docker
|
|
|
|
The easiest way of getting started is using the official Docker container:
|
|
|
|
```shell
|
|
model=bigscience/bloom-560m
|
|
num_shard=2
|
|
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
|
|
|
docker run --gpus all -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --num-shard $num_shard
|
|
```
|
|
|
|
You can then query the model using either the `/generate` or `/generate_stream` routes:
|
|
|
|
```shell
|
|
curl 127.0.0.1:8080/generate \
|
|
-X POST \
|
|
-d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
|
|
-H 'Content-Type: application/json'
|
|
```
|
|
|
|
```shell
|
|
curl 127.0.0.1:8080/generate_stream \
|
|
-X POST \
|
|
-d '{"inputs":"Testing API","parameters":{"max_new_tokens":9}}' \
|
|
-H 'Content-Type: application/json'
|
|
```
|
|
|
|
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html).
|
|
|
|
### API documentation
|
|
|
|
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
|
|
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
|
|
|
|
### Local install
|
|
|
|
You can also opt to install `text-generation-inference` locally.
|
|
|
|
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
|
|
Python 3.9, e.g. using `conda`:
|
|
|
|
```shell
|
|
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
|
|
|
|
conda create -n text-generation-inference python=3.9
|
|
conda activate text-generation-inference
|
|
```
|
|
|
|
Then run:
|
|
|
|
```shell
|
|
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
|
|
make run-bloom-560m
|
|
```
|
|
|
|
**Note:** on some machines, you may also need the OpenSSL libraries. On Linux machines, run:
|
|
|
|
```shell
|
|
sudo apt-get install libssl-dev
|
|
```
|
|
|
|
### CUDA Kernels
|
|
|
|
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
|
|
the kernels by using the `BUILD_EXTENSIONS=False` environment variable.
|
|
|
|
Be aware that the official Docker image has them enabled by default.
|
|
|
|
## Run BLOOM
|
|
|
|
### Download
|
|
|
|
First you need to download the weights:
|
|
|
|
```shell
|
|
make download-bloom
|
|
```
|
|
|
|
### Run
|
|
|
|
```shell
|
|
make run-bloom # Requires 8xA100 80GB
|
|
```
|
|
|
|
### Quantization
|
|
|
|
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
|
|
|
|
```shell
|
|
make run-bloom-quantize # Requires 8xA100 40GB
|
|
```
|
|
|
|
## Develop
|
|
|
|
```shell
|
|
make server-dev
|
|
make router-dev
|
|
```
|
|
|
|
## Testing
|
|
|
|
```shell
|
|
make python-tests
|
|
make integration-tests
|
|
```
|