hf_text-generation-inference/server/text_generation/models/causal_lm.py

435 lines
16 KiB
Python

import torch
from dataclasses import dataclass
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
from typing import Optional, Tuple, List, Type
from text_generation.models import Model
from text_generation.models.types import GeneratedText, Batch
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria
@dataclass
class CausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
all_logprobs: List[Optional[torch.Tensor]]
# Lengths of all generations present in the batch
input_lengths: List[int]
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
# Metadata used for padding
size: int
max_sequence_length: int
# Past metadata
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.Batch:
return generate_pb2.Batch(
id=self.batch_id,
requests=self.requests,
size=self.size,
)
@classmethod
def from_pb(
cls, pb: generate_pb2.Batch, tokenizer: PreTrainedTokenizerBase, device: torch.device
) -> "CausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
input_lengths = []
all_logprobs = []
# Parse batch
for r in pb.requests:
inputs.append(r.inputs)
input_lengths.append(r.input_length)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters))
stopping_criterias.append(
StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
)
all_logprobs.append(None)
pad_to_multiple_of = 8 if device.type == "cuda" else None
tokenized_inputs = tokenizer(
inputs,
return_tensors="pt",
padding=True,
pad_to_multiple_of=pad_to_multiple_of,
).to(device)
all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
return cls(
batch_id=pb.id,
requests=pb.requests,
input_ids=tokenized_inputs["input_ids"],
attention_mask=tokenized_inputs["attention_mask"],
past_key_values=None,
all_input_ids=all_input_ids,
all_logprobs=all_logprobs,
input_lengths=input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=pb.size,
max_sequence_length=max(input_lengths),
)
@classmethod
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
# Used for padding
total_batch_size = sum(batch.size for batch in batches)
max_sequence_length = max(batch.max_sequence_length for batch in batches)
# Batch attributes
requests = []
input_lengths = []
all_input_ids = []
all_logprobs = []
next_token_choosers = []
stopping_criterias = []
# Batch tensors
input_ids = None
attention_mask = None
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
all_input_ids.extend(batch.all_input_ids)
all_logprobs.extend(batch.all_logprobs)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
# Slicing end index for this batch
end_index = start_index + batch.size
# We only concatenate batches that did at least one step
if batch.past_key_values is None:
raise ValueError("only concatenate prefilled batches")
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_sequence_length),
)
# We need to slice the attention mask to remove padding from previous steps
attention_mask[
start_index:end_index, -batch.max_sequence_length :
] = batch.attention_mask[:, -batch.max_sequence_length :]
for j, past in enumerate(batch.past_key_values):
past_keys, past_values = past
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
past_keys = past_keys.view(batch.size, -1, *past_keys.shape[-2:])
past_values = past_values.view(batch.size, -1, *past_values.shape[-2:])
_, num_heads, padded_sequence_length, head_dim = past_values.shape
padded_past_values_shape = (
total_batch_size,
num_heads,
max_sequence_length - 1,
head_dim,
)
if batch.keys_head_dim_last:
padded_past_keys_shape = padded_past_values_shape
else:
# seq_length is last for BLOOM
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
max_sequence_length - 1,
)
# This will run only once per layer
if j == len(past_key_values):
padded_past_keys = past_keys.new_zeros(padded_past_keys_shape)
padded_past_values = past_values.new_zeros(padded_past_values_shape)
past_key_values.append((padded_past_keys, padded_past_values))
# We slice the past keys and values to remove the padding from previous batches
if batch.keys_head_dim_last:
past_key_values[j][0][
start_index:end_index,
:,
-(batch.max_sequence_length - 1) :,
:,
] = past_keys[:, :, -(batch.max_sequence_length - 1) :, :]
else:
past_key_values[j][0][
start_index:end_index,
:,
:,
-(batch.max_sequence_length - 1) :,
] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]
past_key_values[j][1][
start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
start_index += batch.size
return cls(
batch_id=batches[0].batch_id,
requests=requests,
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
all_input_ids=all_input_ids,
all_logprobs=all_logprobs,
input_lengths=input_lengths,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
size=total_batch_size,
max_sequence_length=max_sequence_length,
keys_head_dim_last=batches[0].keys_head_dim_last,
)
class CausalLM(Model):
def __init__(self, model_name: str, quantize=False):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
else:
if quantize:
raise ValueError("quantization is not available on CPU")
device = torch.device("cpu")
dtype = torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
self.model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=dtype,
device_map="auto" if torch.cuda.is_available() else None,
load_in_8bit=quantize,
).eval()
tokenizer.pad_token_id = (
self.model.config.pad_token_id
if self.model.config.pad_token_id is not None
else self.model.config.eos_token_id
)
super(CausalLM, self).__init__(
tokenizer=tokenizer,
device=device,
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
def forward(
self, input_ids, attention_mask, past_key_values: Optional = None
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
outputs = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
return outputs.logits, outputs.past_key_values
def generate_token(
self, batch: CausalLMBatch
) -> Tuple[List[GeneratedText], Optional[CausalLMBatch]]:
# For some reason, inference_mode does not work well with GLOO which we use on CPU
context_manager = (
torch.no_grad if self.device.type == "cpu" else torch.inference_mode
)
with context_manager():
logits, past = self.forward(
batch.input_ids, batch.attention_mask, batch.past_key_values
)
# List of indices to cache
next_batch_keep_indices = []
# New values for next forward
next_batch_input_lengths = []
next_batch_input_ids = []
next_batch_all_input_ids = []
next_batch_all_logprobs = []
# Metadata
next_batch_size = 0
next_batch_max_sequence_length = 0
# Finished requests
generated_texts: List[GeneratedText] = []
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
batch.all_logprobs,
)
# For each member of the batch
for i, (
request,
input_length,
logits,
next_token_chooser,
stopping_criteria,
all_input_ids,
all_logprobs,
) in enumerate(iterator):
# Select next token
tokens, logprobs = next_token_chooser(all_input_ids, logits)
next_token = tokens[-1].view(1, 1)
# Append next token to all tokens
all_input_ids = torch.cat([all_input_ids, next_token])
new_input_length = input_length + 1
if all_logprobs is None:
# logprobs of all prompt tokens (except the first one) and the generated token
all_logprobs = logprobs.gather(1, all_input_ids[1:])
else:
# logprob of the generated token
next_token_logprob = logprobs[-1, next_token]
all_logprobs = torch.cat([all_logprobs, next_token_logprob])
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token.squeeze(),
self.tokenizer.decode(
next_token.squeeze(), clean_up_tokenization_spaces=False
),
)
if stop:
# Decode all tokens
output_text = self.tokenizer.decode(
all_input_ids.squeeze(-1), skip_special_tokens=True,
cleanup_tokenization_spaces=False
)
# Slice with input_length to remove padding
token_ids = all_input_ids[-new_input_length:]
tokens = self.tokenizer.batch_decode(token_ids)
# Add NaN for the first prompt token
logprobs = [float("nan")] + all_logprobs[-new_input_length:].squeeze(
1
).tolist()
# Add to the list of finished generations with the original request
generated_texts.append(
GeneratedText(
request=request,
output_text=output_text,
generated_tokens=stopping_criteria.current_tokens,
tokens=tokens,
token_ids=token_ids.squeeze(1).tolist(),
logprobs=logprobs,
reason=reason,
)
)
# add to the next batch
else:
next_batch_keep_indices.append(i)
next_batch_input_ids.append(next_token)
next_batch_all_input_ids.append(all_input_ids)
next_batch_all_logprobs.append(all_logprobs)
next_batch_size += 1
next_batch_input_lengths.append(new_input_length)
next_batch_max_sequence_length = max(
next_batch_max_sequence_length, new_input_length
)
# We finished all generations in the batch; there is no next batch
if not next_batch_keep_indices:
return generated_texts, None
next_batch_input_ids = torch.cat(next_batch_input_ids, dim=0)
# If we finished at least one generation, we need to evict the indices of the generations that finished
# from the values of the next batch
if generated_texts:
# Apply indices to attention mask, past key values and other items that need to be cached
next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
# Force past to be of dim [batch_size, num_heads, ...] for easy indexing
next_batch_past_key_values = [
[
t.view(batch.size, -1, *t.shape[-2:])[next_batch_keep_indices]
for t in layer
]
for layer in past
]
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
next_batch_next_token_choosers = [
batch.next_token_choosers[i] for i in next_batch_keep_indices
]
next_batch_stopping_criterias = [
batch.stopping_criterias[i] for i in next_batch_keep_indices
]
else:
next_batch_attention_mask = batch.attention_mask
next_batch_past_key_values = past
next_batch_requests = batch.requests
next_batch_next_token_choosers = batch.next_token_choosers
next_batch_stopping_criterias = batch.stopping_criterias
# Update attention_mask with padding as we added a new token to input_ids
next_batch_attention_mask = torch.cat(
[
next_batch_attention_mask,
next_batch_attention_mask.new_ones(next_batch_size, 1),
],
dim=1,
)
next_batch = CausalLMBatch(
batch_id=batch.batch_id,
requests=next_batch_requests,
input_ids=next_batch_input_ids,
attention_mask=next_batch_attention_mask,
past_key_values=next_batch_past_key_values,
all_input_ids=next_batch_all_input_ids,
all_logprobs=next_batch_all_logprobs,
input_lengths=next_batch_input_lengths,
next_token_choosers=next_batch_next_token_choosers,
stopping_criterias=next_batch_stopping_criterias,
size=next_batch_size,
max_sequence_length=next_batch_max_sequence_length,
keys_head_dim_last=batch.keys_head_dim_last,
)
return generated_texts, next_batch