hf_text-generation-inference/server/tests/utils/test_layers.py

83 lines
2.5 KiB
Python

import torch
from text_generation_server.layers import (
TensorParallelEmbedding,
)
class ProcessGroup:
def __init__(self, rank: int, world_size: int):
self._rank = rank
self.world_size = world_size
def size(self) -> int:
return self.world_size
def rank(self) -> int:
return self._rank
class Weights:
def __init__(self, rank: int, world_size: int, vocab_size: int, hidden_dim: int):
self.weight = (
torch.arange(vocab_size * hidden_dim).float().view(vocab_size, hidden_dim)
)
self.process_group = ProcessGroup(rank, world_size)
def get_partial_sharded(self, name: str, dim: int):
assert dim == 0
rank = self.process_group.rank()
world_size = self.process_group.size()
size = self.weight.shape[dim]
block_size = (size + world_size - 1) // world_size
start = rank * block_size
stop = (rank + 1) * block_size
return self.weight[start:stop]
def get_shape(self, name: str):
return self.weight.shape
def test_weight_hub_files_offline_error():
vocab_size = 17
weights = Weights(
rank=0,
world_size=1,
vocab_size=vocab_size,
hidden_dim=256,
)
embeddings = TensorParallelEmbedding("", weights)
input_ids = torch.arange(vocab_size)
output = embeddings.forward(input_ids)
assert embeddings.min_id == 0
assert embeddings.max_id == 17
torch.testing.assert_close(output, torch.arange(256 * 17).float().view(17, 256))
weights_0_2 = Weights(rank=0, world_size=2, vocab_size=vocab_size, hidden_dim=256)
weights_1_2 = Weights(rank=1, world_size=2, vocab_size=vocab_size, hidden_dim=256)
embeddings_0_2 = TensorParallelEmbedding("", weights_0_2, reduce=False)
assert embeddings_0_2.min_id == 0
assert embeddings_0_2.max_id == 9
torch.testing.assert_close(
embeddings_0_2.weight,
torch.cat([torch.arange(9 * 256), torch.zeros(256)], dim=0)
.view(10, 256)
.float(),
)
embeddings_1_2 = TensorParallelEmbedding("", weights_1_2, reduce=False)
assert embeddings_1_2.min_id == 9
assert embeddings_1_2.max_id == 17
torch.testing.assert_close(
embeddings_1_2.weight,
torch.cat([torch.arange(8 * 256) + 9 * 256, torch.zeros(256)], dim=0)
.view(9, 256)
.float(),
)
output_tp_0 = embeddings_0_2.forward(input_ids)
output_tp_1 = embeddings_1_2.forward(input_ids)
torch.testing.assert_close(output, output_tp_0 + output_tp_1)