hf_text-generation-inference/backends/llamacpp/csrc/backend.cpp

73 lines
2.2 KiB
C++

//
// Created by Morgan Funtowicz on 9/28/2024.
//
#include <arg.h>
#include <common.h>
#include <fmt/format.h>
#include <spdlog/spdlog.h>
#include "backend.hpp"
namespace huggingface::tgi::backends::llama {
std::unique_ptr<TgiLlamaCppBackend> CreateLlamaCppBackend(std::string_view root) {
SPDLOG_INFO(FMT_STRING("Loading model from {}"), root);
gpt_init();
// Fake argv
std::vector<std::string_view> args = {"tgi_llama_cpp_backend", "--model", root};
std::vector<char*> argv;
for(const auto& arg : args) {
argv.push_back(const_cast<char *>(arg.data()));
}
argv.push_back(nullptr);
// Create the GPT parameters
gpt_params params;
if (!gpt_params_parse(args.size(), argv.data(), params, LLAMA_EXAMPLE_SERVER)) {
throw std::runtime_error("Failed to create GPT Params from model");
}
// Create the inference engine
SPDLOG_INFO("Allocating llama.cpp model from gpt_params");
auto result = llama_init_from_gpt_params(params);
// Unpack all the inference engine components
auto model = result.model;
auto context = result.context;
auto loras = result.lora_adapters;
// Make sure everything is correctly initialized
if(model == nullptr)
throw std::runtime_error(fmt::format("Failed to load model from {}", root));
return std::make_unique<TgiLlamaCppBackend>(model, context);
}
TgiLlamaCppBackend::TgiLlamaCppBackend(llama_model *const model, llama_context *const ctx)
: model(model), ctx(ctx), batch()
{
char modelName[128];
llama_model_meta_val_str(model, "general.name", modelName, sizeof(modelName));
SPDLOG_DEBUG(FMT_STRING("Created llama.cpp backend for model: '{}'"), std::string_view(modelName));
}
TgiLlamaCppBackend::~TgiLlamaCppBackend() {
if(model)
{
SPDLOG_DEBUG("Freeing llama.cpp model");
llama_free_model(model);
}
if(ctx)
{
SPDLOG_DEBUG("Freeing llama.cpp context");
llama_free(ctx);
}
}
void TgiLlamaCppBackend::schedule() {
std::vector<llama_token> tokens;
}
}