monero/external/qrcodegen/QrCode.hpp

557 lines
20 KiB
C++
Raw Permalink Normal View History

/*
* QR Code generator library (C++)
*
* Copyright (c) Project Nayuki. (MIT License)
* https://www.nayuki.io/page/qr-code-generator-library
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
#pragma once
#include <array>
#include <cstdint>
#include <stdexcept>
#include <string>
#include <vector>
namespace qrcodegen {
/*
* A segment of character/binary/control data in a QR Code symbol.
* Instances of this class are immutable.
* The mid-level way to create a segment is to take the payload data
* and call a static factory function such as QrSegment::makeNumeric().
* The low-level way to create a segment is to custom-make the bit buffer
* and call the QrSegment() constructor with appropriate values.
* This segment class imposes no length restrictions, but QR Codes have restrictions.
* Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
* Any segment longer than this is meaningless for the purpose of generating QR Codes.
*/
class QrSegment final {
/*---- Public helper enumeration ----*/
/*
* Describes how a segment's data bits are interpreted. Immutable.
*/
public: class Mode final {
/*-- Constants --*/
public: static const Mode NUMERIC;
public: static const Mode ALPHANUMERIC;
public: static const Mode BYTE;
public: static const Mode KANJI;
public: static const Mode ECI;
/*-- Fields --*/
// The mode indicator bits, which is a uint4 value (range 0 to 15).
private: int modeBits;
// Number of character count bits for three different version ranges.
private: int numBitsCharCount[3];
/*-- Constructor --*/
private: Mode(int mode, int cc0, int cc1, int cc2);
/*-- Methods --*/
/*
* (Package-private) Returns the mode indicator bits, which is an unsigned 4-bit value (range 0 to 15).
*/
public: int getModeBits() const;
/*
* (Package-private) Returns the bit width of the character count field for a segment in
* this mode in a QR Code at the given version number. The result is in the range [0, 16].
*/
public: int numCharCountBits(int ver) const;
};
/*---- Static factory functions (mid level) ----*/
/*
* Returns a segment representing the given binary data encoded in
* byte mode. All input byte vectors are acceptable. Any text string
* can be converted to UTF-8 bytes and encoded as a byte mode segment.
*/
public: static QrSegment makeBytes(const std::vector<std::uint8_t> &data);
/*
* Returns a segment representing the given string of decimal digits encoded in numeric mode.
*/
public: static QrSegment makeNumeric(const char *digits);
/*
* Returns a segment representing the given text string encoded in alphanumeric mode.
* The characters allowed are: 0 to 9, A to Z (uppercase only), space,
* dollar, percent, asterisk, plus, hyphen, period, slash, colon.
*/
public: static QrSegment makeAlphanumeric(const char *text);
/*
* Returns a list of zero or more segments to represent the given text string. The result
* may use various segment modes and switch modes to optimize the length of the bit stream.
*/
public: static std::vector<QrSegment> makeSegments(const char *text);
/*
* Returns a segment representing an Extended Channel Interpretation
* (ECI) designator with the given assignment value.
*/
public: static QrSegment makeEci(long assignVal);
/*---- Public static helper functions ----*/
/*
* Tests whether the given string can be encoded as a segment in alphanumeric mode.
* A string is encodable iff each character is in the following set: 0 to 9, A to Z
* (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
*/
public: static bool isAlphanumeric(const char *text);
/*
* Tests whether the given string can be encoded as a segment in numeric mode.
* A string is encodable iff each character is in the range 0 to 9.
*/
public: static bool isNumeric(const char *text);
/*---- Instance fields ----*/
/* The mode indicator of this segment. Accessed through getMode(). */
private: Mode mode;
/* The length of this segment's unencoded data. Measured in characters for
* numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
* Always zero or positive. Not the same as the data's bit length.
* Accessed through getNumChars(). */
private: int numChars;
/* The data bits of this segment. Accessed through getData(). */
private: std::vector<bool> data;
/*---- Constructors (low level) ----*/
/*
* Creates a new QR Code segment with the given attributes and data.
* The character count (numCh) must agree with the mode and the bit buffer length,
* but the constraint isn't checked. The given bit buffer is copied and stored.
*/
public: QrSegment(Mode md, int numCh, const std::vector<bool> &dt);
/*
* Creates a new QR Code segment with the given parameters and data.
* The character count (numCh) must agree with the mode and the bit buffer length,
* but the constraint isn't checked. The given bit buffer is moved and stored.
*/
public: QrSegment(Mode md, int numCh, std::vector<bool> &&dt);
/*---- Methods ----*/
/*
* Returns the mode field of this segment.
*/
public: Mode getMode() const;
/*
* Returns the character count field of this segment.
*/
public: int getNumChars() const;
/*
* Returns the data bits of this segment.
*/
public: const std::vector<bool> &getData() const;
// (Package-private) Calculates the number of bits needed to encode the given segments at
// the given version. Returns a non-negative number if successful. Otherwise returns -1 if a
// segment has too many characters to fit its length field, or the total bits exceeds INT_MAX.
public: static int getTotalBits(const std::vector<QrSegment> &segs, int version);
/*---- Private constant ----*/
/* The set of all legal characters in alphanumeric mode, where
* each character value maps to the index in the string. */
private: static const char *ALPHANUMERIC_CHARSET;
};
/*
* A QR Code symbol, which is a type of two-dimension barcode.
* Invented by Denso Wave and described in the ISO/IEC 18004 standard.
* Instances of this class represent an immutable square grid of black and white cells.
* The class provides static factory functions to create a QR Code from text or binary data.
* The class covers the QR Code Model 2 specification, supporting all versions (sizes)
* from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
*
* Ways to create a QR Code object:
* - High level: Take the payload data and call QrCode::encodeText() or QrCode::encodeBinary().
* - Mid level: Custom-make the list of segments and call QrCode::encodeSegments().
* - Low level: Custom-make the array of data codeword bytes (including
* segment headers and final padding, excluding error correction codewords),
* supply the appropriate version number, and call the QrCode() constructor.
* (Note that all ways require supplying the desired error correction level.)
*/
class QrCode final {
/*---- Public helper enumeration ----*/
/*
* The error correction level in a QR Code symbol.
*/
public: enum class Ecc {
LOW = 0 , // The QR Code can tolerate about 7% erroneous codewords
MEDIUM , // The QR Code can tolerate about 15% erroneous codewords
QUARTILE, // The QR Code can tolerate about 25% erroneous codewords
HIGH , // The QR Code can tolerate about 30% erroneous codewords
};
// Returns a value in the range 0 to 3 (unsigned 2-bit integer).
private: static int getFormatBits(Ecc ecl);
/*---- Static factory functions (high level) ----*/
/*
* Returns a QR Code representing the given Unicode text string at the given error correction level.
* As a conservative upper bound, this function is guaranteed to succeed for strings that have 2953 or fewer
* UTF-8 code units (not Unicode code points) if the low error correction level is used. The smallest possible
* QR Code version is automatically chosen for the output. The ECC level of the result may be higher than
* the ecl argument if it can be done without increasing the version.
*/
public: static QrCode encodeText(const char *text, Ecc ecl);
/*
* Returns a QR Code representing the given binary data at the given error correction level.
* This function always encodes using the binary segment mode, not any text mode. The maximum number of
* bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
* The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
*/
public: static QrCode encodeBinary(const std::vector<std::uint8_t> &data, Ecc ecl);
/*---- Static factory functions (mid level) ----*/
/*
* Returns a QR Code representing the given segments with the given encoding parameters.
* The smallest possible QR Code version within the given range is automatically
* chosen for the output. Iff boostEcl is true, then the ECC level of the result
* may be higher than the ecl argument if it can be done without increasing the
* version. The mask number is either between 0 to 7 (inclusive) to force that
* mask, or -1 to automatically choose an appropriate mask (which may be slow).
* This function allows the user to create a custom sequence of segments that switches
* between modes (such as alphanumeric and byte) to encode text in less space.
* This is a mid-level API; the high-level API is encodeText() and encodeBinary().
*/
public: static QrCode encodeSegments(const std::vector<QrSegment> &segs, Ecc ecl,
int minVersion=1, int maxVersion=40, int mask=-1, bool boostEcl=true); // All optional parameters
/*---- Instance fields ----*/
// Immutable scalar parameters:
/* The version number of this QR Code, which is between 1 and 40 (inclusive).
* This determines the size of this barcode. */
private: int version;
/* The width and height of this QR Code, measured in modules, between
* 21 and 177 (inclusive). This is equal to version * 4 + 17. */
private: int size;
/* The error correction level used in this QR Code. */
private: Ecc errorCorrectionLevel;
/* The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
* Even if a QR Code is created with automatic masking requested (mask = -1),
* the resulting object still has a mask value between 0 and 7. */
private: int mask;
// Private grids of modules/pixels, with dimensions of size*size:
// The modules of this QR Code (false = white, true = black).
// Immutable after constructor finishes. Accessed through getModule().
private: std::vector<std::vector<bool> > modules;
// Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
private: std::vector<std::vector<bool> > isFunction;
/*---- Constructor (low level) ----*/
/*
* Creates a new QR Code with the given version number,
* error correction level, data codeword bytes, and mask number.
* This is a low-level API that most users should not use directly.
* A mid-level API is the encodeSegments() function.
*/
public: QrCode(int ver, Ecc ecl, const std::vector<std::uint8_t> &dataCodewords, int msk);
/*---- Public instance methods ----*/
/*
* Returns this QR Code's version, in the range [1, 40].
*/
public: int getVersion() const;
/*
* Returns this QR Code's size, in the range [21, 177].
*/
public: int getSize() const;
/*
* Returns this QR Code's error correction level.
*/
public: Ecc getErrorCorrectionLevel() const;
/*
* Returns this QR Code's mask, in the range [0, 7].
*/
public: int getMask() const;
/*
* Returns the color of the module (pixel) at the given coordinates, which is false
* for white or true for black. The top left corner has the coordinates (x=0, y=0).
* If the given coordinates are out of bounds, then false (white) is returned.
*/
public: bool getModule(int x, int y) const;
/*
* Returns a string of SVG code for an image depicting this QR Code, with the given number
* of border modules. The string always uses Unix newlines (\n), regardless of the platform.
*/
public: std::string toSvgString(int border) const;
/*---- Private helper methods for constructor: Drawing function modules ----*/
// Reads this object's version field, and draws and marks all function modules.
private: void drawFunctionPatterns();
// Draws two copies of the format bits (with its own error correction code)
// based on the given mask and this object's error correction level field.
private: void drawFormatBits(int msk);
// Draws two copies of the version bits (with its own error correction code),
// based on this object's version field, iff 7 <= version <= 40.
private: void drawVersion();
// Draws a 9*9 finder pattern including the border separator,
// with the center module at (x, y). Modules can be out of bounds.
private: void drawFinderPattern(int x, int y);
// Draws a 5*5 alignment pattern, with the center module
// at (x, y). All modules must be in bounds.
private: void drawAlignmentPattern(int x, int y);
// Sets the color of a module and marks it as a function module.
// Only used by the constructor. Coordinates must be in bounds.
private: void setFunctionModule(int x, int y, bool isBlack);
// Returns the color of the module at the given coordinates, which must be in range.
private: bool module(int x, int y) const;
/*---- Private helper methods for constructor: Codewords and masking ----*/
// Returns a new byte string representing the given data with the appropriate error correction
// codewords appended to it, based on this object's version and error correction level.
private: std::vector<std::uint8_t> addEccAndInterleave(const std::vector<std::uint8_t> &data) const;
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
// data area of this QR Code. Function modules need to be marked off before this is called.
private: void drawCodewords(const std::vector<std::uint8_t> &data);
// XORs the codeword modules in this QR Code with the given mask pattern.
// The function modules must be marked and the codeword bits must be drawn
// before masking. Due to the arithmetic of XOR, calling applyMask() with
// the same mask value a second time will undo the mask. A final well-formed
// QR Code needs exactly one (not zero, two, etc.) mask applied.
private: void applyMask(int msk);
// Calculates and returns the penalty score based on state of this QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
private: long getPenaltyScore() const;
/*---- Private helper functions ----*/
// Returns an ascending list of positions of alignment patterns for this version number.
// Each position is in the range [0,177), and are used on both the x and y axes.
// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
private: std::vector<int> getAlignmentPatternPositions() const;
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
private: static int getNumRawDataModules(int ver);
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
// QR Code of the given version number and error correction level, with remainder bits discarded.
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
private: static int getNumDataCodewords(int ver, Ecc ecl);
// Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
// implemented as a lookup table over all possible parameter values, instead of as an algorithm.
private: static std::vector<std::uint8_t> reedSolomonComputeDivisor(int degree);
// Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.
private: static std::vector<std::uint8_t> reedSolomonComputeRemainder(const std::vector<std::uint8_t> &data, const std::vector<std::uint8_t> &divisor);
// Returns the product of the two given field elements modulo GF(2^8/0x11D).
// All inputs are valid. This could be implemented as a 256*256 lookup table.
private: static std::uint8_t reedSolomonMultiply(std::uint8_t x, std::uint8_t y);
// Can only be called immediately after a white run is added, and
// returns either 0, 1, or 2. A helper function for getPenaltyScore().
private: int finderPenaltyCountPatterns(const std::array<int,7> &runHistory) const;
// Must be called at the end of a line (row or column) of modules. A helper function for getPenaltyScore().
private: int finderPenaltyTerminateAndCount(bool currentRunColor, int currentRunLength, std::array<int,7> &runHistory) const;
// Pushes the given value to the front and drops the last value. A helper function for getPenaltyScore().
private: void finderPenaltyAddHistory(int currentRunLength, std::array<int,7> &runHistory) const;
// Returns true iff the i'th bit of x is set to 1.
private: static bool getBit(long x, int i);
/*---- Constants and tables ----*/
// The minimum version number supported in the QR Code Model 2 standard.
public: static constexpr int MIN_VERSION = 1;
// The maximum version number supported in the QR Code Model 2 standard.
public: static constexpr int MAX_VERSION = 40;
// For use in getPenaltyScore(), when evaluating which mask is best.
private: static const int PENALTY_N1;
private: static const int PENALTY_N2;
private: static const int PENALTY_N3;
private: static const int PENALTY_N4;
private: static const std::int8_t ECC_CODEWORDS_PER_BLOCK[4][41];
private: static const std::int8_t NUM_ERROR_CORRECTION_BLOCKS[4][41];
};
/*---- Public exception class ----*/
/*
* Thrown when the supplied data does not fit any QR Code version. Ways to handle this exception include:
* - Decrease the error correction level if it was greater than Ecc::LOW.
* - If the encodeSegments() function was called with a maxVersion argument, then increase
* it if it was less than QrCode::MAX_VERSION. (This advice does not apply to the other
* factory functions because they search all versions up to QrCode::MAX_VERSION.)
* - Split the text data into better or optimal segments in order to reduce the number of bits required.
* - Change the text or binary data to be shorter.
* - Change the text to fit the character set of a particular segment mode (e.g. alphanumeric).
* - Propagate the error upward to the caller/user.
*/
class data_too_long : public std::length_error {
public: explicit data_too_long(const std::string &msg);
};
/*
* An appendable sequence of bits (0s and 1s). Mainly used by QrSegment.
*/
class BitBuffer final : public std::vector<bool> {
/*---- Constructor ----*/
// Creates an empty bit buffer (length 0).
public: BitBuffer();
/*---- Method ----*/
// Appends the given number of low-order bits of the given value
// to this buffer. Requires 0 <= len <= 31 and val < 2^len.
public: void appendBits(std::uint32_t val, int len);
};
}