2014-10-05 15:44:31 -06:00
|
|
|
/*
|
|
|
|
* validator/val_sigcrypt.c - validator signature crypto functions.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2007, NLnet Labs. All rights reserved.
|
|
|
|
*
|
|
|
|
* This software is open source.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
|
|
* and/or other materials provided with the distribution.
|
|
|
|
*
|
|
|
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
|
|
|
* be used to endorse or promote products derived from this software without
|
|
|
|
* specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \file
|
|
|
|
*
|
|
|
|
* This file contains helper functions for the validator module.
|
|
|
|
* The functions help with signature verification and checking, the
|
|
|
|
* bridging between RR wireformat data and crypto calls.
|
|
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "validator/val_sigcrypt.h"
|
|
|
|
#include "validator/val_secalgo.h"
|
|
|
|
#include "validator/validator.h"
|
|
|
|
#include "util/data/msgreply.h"
|
|
|
|
#include "util/data/msgparse.h"
|
|
|
|
#include "util/data/dname.h"
|
|
|
|
#include "util/rbtree.h"
|
|
|
|
#include "util/module.h"
|
|
|
|
#include "util/net_help.h"
|
|
|
|
#include "util/regional.h"
|
2015-04-02 03:16:18 -06:00
|
|
|
#include "sldns/keyraw.h"
|
|
|
|
#include "sldns/sbuffer.h"
|
|
|
|
#include "sldns/parseutil.h"
|
|
|
|
#include "sldns/wire2str.h"
|
2014-10-05 15:44:31 -06:00
|
|
|
|
|
|
|
#include <ctype.h>
|
2015-12-30 03:57:50 -07:00
|
|
|
#if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
|
2014-10-05 15:44:31 -06:00
|
|
|
#error "Need crypto library to do digital signature cryptography"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENSSL_ERR_H
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENSSL_RAND_H
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENSSL_CONF_H
|
|
|
|
#include <openssl/conf.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENSSL_ENGINE_H
|
|
|
|
#include <openssl/engine.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/** return number of rrs in an rrset */
|
|
|
|
static size_t
|
|
|
|
rrset_get_count(struct ub_packed_rrset_key* rrset)
|
|
|
|
{
|
|
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)
|
|
|
|
rrset->entry.data;
|
|
|
|
if(!d) return 0;
|
|
|
|
return d->count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get RR signature count
|
|
|
|
*/
|
|
|
|
static size_t
|
|
|
|
rrset_get_sigcount(struct ub_packed_rrset_key* k)
|
|
|
|
{
|
|
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
|
|
return d->rrsig_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get signature keytag value
|
|
|
|
* @param k: rrset (with signatures)
|
|
|
|
* @param sig_idx: signature index.
|
|
|
|
* @return keytag or 0 if malformed rrsig.
|
|
|
|
*/
|
|
|
|
static uint16_t
|
|
|
|
rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx)
|
|
|
|
{
|
|
|
|
uint16_t t;
|
|
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
|
|
log_assert(sig_idx < d->rrsig_count);
|
|
|
|
if(d->rr_len[d->count + sig_idx] < 2+18)
|
|
|
|
return 0;
|
|
|
|
memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2);
|
|
|
|
return ntohs(t);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get signature signing algorithm value
|
|
|
|
* @param k: rrset (with signatures)
|
|
|
|
* @param sig_idx: signature index.
|
|
|
|
* @return algo or 0 if malformed rrsig.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx)
|
|
|
|
{
|
|
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
|
|
log_assert(sig_idx < d->rrsig_count);
|
|
|
|
if(d->rr_len[d->count + sig_idx] < 2+3)
|
|
|
|
return 0;
|
|
|
|
return (int)d->rr_data[d->count + sig_idx][2+2];
|
|
|
|
}
|
|
|
|
|
|
|
|
/** get rdata pointer and size */
|
|
|
|
static void
|
|
|
|
rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata,
|
|
|
|
size_t* len)
|
|
|
|
{
|
|
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
|
|
log_assert(d && idx < (d->count + d->rrsig_count));
|
|
|
|
*rdata = d->rr_data[idx];
|
|
|
|
*len = d->rr_len[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t
|
|
|
|
dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx)
|
|
|
|
{
|
|
|
|
uint8_t* rdata;
|
|
|
|
size_t len;
|
|
|
|
uint16_t f;
|
|
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
|
|
if(len < 2+2)
|
|
|
|
return 0;
|
|
|
|
memmove(&f, rdata+2, 2);
|
|
|
|
f = ntohs(f);
|
|
|
|
return f;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get DNSKEY protocol value from rdata
|
|
|
|
* @param k: DNSKEY rrset.
|
|
|
|
* @param idx: which key.
|
|
|
|
* @return protocol octet value
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx)
|
|
|
|
{
|
|
|
|
uint8_t* rdata;
|
|
|
|
size_t len;
|
|
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
|
|
if(len < 2+4)
|
|
|
|
return 0;
|
|
|
|
return (int)rdata[2+2];
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx)
|
|
|
|
{
|
|
|
|
uint8_t* rdata;
|
|
|
|
size_t len;
|
|
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
|
|
if(len < 2+4)
|
|
|
|
return 0;
|
|
|
|
return (int)rdata[2+3];
|
|
|
|
}
|
|
|
|
|
|
|
|
/** get public key rdata field from a dnskey RR and do some checks */
|
|
|
|
static void
|
|
|
|
dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx,
|
|
|
|
unsigned char** pk, unsigned int* pklen)
|
|
|
|
{
|
|
|
|
uint8_t* rdata;
|
|
|
|
size_t len;
|
|
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
|
|
if(len < 2+5) {
|
|
|
|
*pk = NULL;
|
|
|
|
*pklen = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
*pk = (unsigned char*)rdata+2+4;
|
|
|
|
*pklen = (unsigned)len-2-4;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx)
|
|
|
|
{
|
|
|
|
uint8_t* rdata;
|
|
|
|
size_t len;
|
|
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
|
|
if(len < 2+3)
|
|
|
|
return 0;
|
|
|
|
return (int)rdata[2+2];
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx)
|
|
|
|
{
|
|
|
|
uint8_t* rdata;
|
|
|
|
size_t len;
|
|
|
|
rrset_get_rdata(k, idx, &rdata, &len);
|
|
|
|
if(len < 2+4)
|
|
|
|
return 0;
|
|
|
|
return (int)rdata[2+3];
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t
|
|
|
|
ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
|
|
|
|
{
|
|
|
|
uint16_t t;
|
|
|
|
uint8_t* rdata;
|
|
|
|
size_t len;
|
|
|
|
rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len);
|
|
|
|
if(len < 2+2)
|
|
|
|
return 0;
|
|
|
|
memmove(&t, rdata+2, 2);
|
|
|
|
return ntohs(t);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return pointer to the digest in a DS RR.
|
|
|
|
* @param k: DS rrset.
|
|
|
|
* @param idx: which DS.
|
|
|
|
* @param digest: digest data is returned.
|
|
|
|
* on error, this is NULL.
|
|
|
|
* @param len: length of digest is returned.
|
|
|
|
* on error, the length is 0.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest,
|
|
|
|
size_t* len)
|
|
|
|
{
|
|
|
|
uint8_t* rdata;
|
|
|
|
size_t rdlen;
|
|
|
|
rrset_get_rdata(k, idx, &rdata, &rdlen);
|
|
|
|
if(rdlen < 2+5) {
|
|
|
|
*digest = NULL;
|
|
|
|
*len = 0;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
*digest = rdata + 2 + 4;
|
|
|
|
*len = rdlen - 2 - 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Return size of DS digest according to its hash algorithm.
|
|
|
|
* @param k: DS rrset.
|
|
|
|
* @param idx: which DS.
|
|
|
|
* @return size in bytes of digest, or 0 if not supported.
|
|
|
|
*/
|
|
|
|
static size_t
|
|
|
|
ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx)
|
|
|
|
{
|
|
|
|
return ds_digest_size_supported(ds_get_digest_algo(k, idx));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Create a DS digest for a DNSKEY entry.
|
|
|
|
*
|
|
|
|
* @param env: module environment. Uses scratch space.
|
|
|
|
* @param dnskey_rrset: DNSKEY rrset.
|
|
|
|
* @param dnskey_idx: index of RR in rrset.
|
|
|
|
* @param ds_rrset: DS rrset
|
|
|
|
* @param ds_idx: index of RR in DS rrset.
|
|
|
|
* @param digest: digest is returned in here (must be correctly sized).
|
|
|
|
* @return false on error.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
ds_create_dnskey_digest(struct module_env* env,
|
|
|
|
struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
|
|
|
|
struct ub_packed_rrset_key* ds_rrset, size_t ds_idx,
|
|
|
|
uint8_t* digest)
|
|
|
|
{
|
|
|
|
sldns_buffer* b = env->scratch_buffer;
|
|
|
|
uint8_t* dnskey_rdata;
|
|
|
|
size_t dnskey_len;
|
|
|
|
rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len);
|
|
|
|
|
|
|
|
/* create digest source material in buffer
|
|
|
|
* digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
|
|
|
|
* DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */
|
|
|
|
sldns_buffer_clear(b);
|
|
|
|
sldns_buffer_write(b, dnskey_rrset->rk.dname,
|
|
|
|
dnskey_rrset->rk.dname_len);
|
|
|
|
query_dname_tolower(sldns_buffer_begin(b));
|
|
|
|
sldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/
|
|
|
|
sldns_buffer_flip(b);
|
|
|
|
|
|
|
|
return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx),
|
|
|
|
(unsigned char*)sldns_buffer_begin(b), sldns_buffer_limit(b),
|
|
|
|
(unsigned char*)digest);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ds_digest_match_dnskey(struct module_env* env,
|
|
|
|
struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
|
|
|
|
struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
|
|
|
|
{
|
|
|
|
uint8_t* ds; /* DS digest */
|
|
|
|
size_t dslen;
|
|
|
|
uint8_t* digest; /* generated digest */
|
|
|
|
size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx);
|
|
|
|
|
|
|
|
if(digestlen == 0) {
|
|
|
|
verbose(VERB_QUERY, "DS fail: not supported, or DS RR "
|
|
|
|
"format error");
|
|
|
|
return 0; /* not supported, or DS RR format error */
|
|
|
|
}
|
|
|
|
/* check digest length in DS with length from hash function */
|
|
|
|
ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen);
|
|
|
|
if(!ds || dslen != digestlen) {
|
|
|
|
verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not "
|
|
|
|
"match each other");
|
|
|
|
return 0; /* DS algorithm and digest do not match */
|
|
|
|
}
|
|
|
|
|
|
|
|
digest = regional_alloc(env->scratch, digestlen);
|
|
|
|
if(!digest) {
|
|
|
|
verbose(VERB_QUERY, "DS fail: out of memory");
|
|
|
|
return 0; /* mem error */
|
|
|
|
}
|
|
|
|
if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset,
|
|
|
|
ds_idx, digest)) {
|
|
|
|
verbose(VERB_QUERY, "DS fail: could not calc key digest");
|
|
|
|
return 0; /* digest algo failed */
|
|
|
|
}
|
|
|
|
if(memcmp(digest, ds, dslen) != 0) {
|
|
|
|
verbose(VERB_QUERY, "DS fail: digest is different");
|
|
|
|
return 0; /* digest different */
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
|
|
|
|
size_t ds_idx)
|
|
|
|
{
|
|
|
|
return (ds_digest_size_algo(ds_rrset, ds_idx) != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
|
|
|
|
size_t ds_idx)
|
|
|
|
{
|
|
|
|
return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx));
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t
|
|
|
|
dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx)
|
|
|
|
{
|
|
|
|
uint8_t* data;
|
|
|
|
size_t len;
|
|
|
|
rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len);
|
|
|
|
/* do not pass rdatalen to ldns */
|
|
|
|
return sldns_calc_keytag_raw(data+2, len-2);
|
|
|
|
}
|
|
|
|
|
|
|
|
int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset,
|
|
|
|
size_t dnskey_idx)
|
|
|
|
{
|
|
|
|
return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset,
|
|
|
|
dnskey_idx));
|
|
|
|
}
|
|
|
|
|
|
|
|
void algo_needs_init_dnskey_add(struct algo_needs* n,
|
|
|
|
struct ub_packed_rrset_key* dnskey, uint8_t* sigalg)
|
|
|
|
{
|
|
|
|
uint8_t algo;
|
|
|
|
size_t i, total = n->num;
|
|
|
|
size_t num = rrset_get_count(dnskey);
|
|
|
|
|
|
|
|
for(i=0; i<num; i++) {
|
|
|
|
algo = (uint8_t)dnskey_get_algo(dnskey, i);
|
|
|
|
if(!dnskey_algo_id_is_supported((int)algo))
|
|
|
|
continue;
|
|
|
|
if(n->needs[algo] == 0) {
|
|
|
|
n->needs[algo] = 1;
|
|
|
|
sigalg[total] = algo;
|
|
|
|
total++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sigalg[total] = 0;
|
|
|
|
n->num = total;
|
|
|
|
}
|
|
|
|
|
|
|
|
void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg)
|
|
|
|
{
|
|
|
|
uint8_t algo;
|
|
|
|
size_t total = 0;
|
|
|
|
|
|
|
|
memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
|
|
|
|
while( (algo=*sigalg++) != 0) {
|
|
|
|
log_assert(dnskey_algo_id_is_supported((int)algo));
|
|
|
|
log_assert(n->needs[algo] == 0);
|
|
|
|
n->needs[algo] = 1;
|
|
|
|
total++;
|
|
|
|
}
|
|
|
|
n->num = total;
|
|
|
|
}
|
|
|
|
|
|
|
|
void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds,
|
|
|
|
int fav_ds_algo, uint8_t* sigalg)
|
|
|
|
{
|
|
|
|
uint8_t algo;
|
|
|
|
size_t i, total = 0;
|
|
|
|
size_t num = rrset_get_count(ds);
|
|
|
|
|
|
|
|
memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
|
|
|
|
for(i=0; i<num; i++) {
|
|
|
|
if(ds_get_digest_algo(ds, i) != fav_ds_algo)
|
|
|
|
continue;
|
|
|
|
algo = (uint8_t)ds_get_key_algo(ds, i);
|
|
|
|
if(!dnskey_algo_id_is_supported((int)algo))
|
|
|
|
continue;
|
|
|
|
log_assert(algo != 0); /* we do not support 0 and is EOS */
|
|
|
|
if(n->needs[algo] == 0) {
|
|
|
|
n->needs[algo] = 1;
|
|
|
|
sigalg[total] = algo;
|
|
|
|
total++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
sigalg[total] = 0;
|
|
|
|
n->num = total;
|
|
|
|
}
|
|
|
|
|
|
|
|
int algo_needs_set_secure(struct algo_needs* n, uint8_t algo)
|
|
|
|
{
|
|
|
|
if(n->needs[algo]) {
|
|
|
|
n->needs[algo] = 0;
|
|
|
|
n->num --;
|
|
|
|
if(n->num == 0) /* done! */
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo)
|
|
|
|
{
|
|
|
|
if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t algo_needs_num_missing(struct algo_needs* n)
|
|
|
|
{
|
|
|
|
return n->num;
|
|
|
|
}
|
|
|
|
|
|
|
|
int algo_needs_missing(struct algo_needs* n)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
/* first check if a needed algo was bogus - report that */
|
|
|
|
for(i=0; i<ALGO_NEEDS_MAX; i++)
|
|
|
|
if(n->needs[i] == 2)
|
|
|
|
return 0;
|
|
|
|
/* now check which algo is missing */
|
|
|
|
for(i=0; i<ALGO_NEEDS_MAX; i++)
|
|
|
|
if(n->needs[i] == 1)
|
|
|
|
return i;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
enum sec_status
|
|
|
|
dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve,
|
|
|
|
struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
|
|
|
|
uint8_t* sigalg, char** reason)
|
|
|
|
{
|
|
|
|
enum sec_status sec;
|
|
|
|
size_t i, num;
|
|
|
|
rbtree_t* sortree = NULL;
|
|
|
|
/* make sure that for all DNSKEY algorithms there are valid sigs */
|
|
|
|
struct algo_needs needs;
|
|
|
|
int alg;
|
|
|
|
|
|
|
|
num = rrset_get_sigcount(rrset);
|
|
|
|
if(num == 0) {
|
|
|
|
verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
|
|
|
|
"signatures");
|
|
|
|
*reason = "no signatures";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(sigalg) {
|
|
|
|
algo_needs_init_list(&needs, sigalg);
|
|
|
|
if(algo_needs_num_missing(&needs) == 0) {
|
|
|
|
verbose(VERB_QUERY, "zone has no known algorithms");
|
|
|
|
*reason = "zone has no known algorithms";
|
|
|
|
return sec_status_insecure;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for(i=0; i<num; i++) {
|
|
|
|
sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset,
|
|
|
|
dnskey, i, &sortree, reason);
|
|
|
|
/* see which algorithm has been fixed up */
|
|
|
|
if(sec == sec_status_secure) {
|
|
|
|
if(!sigalg)
|
|
|
|
return sec; /* done! */
|
|
|
|
else if(algo_needs_set_secure(&needs,
|
|
|
|
(uint8_t)rrset_get_sig_algo(rrset, i)))
|
|
|
|
return sec; /* done! */
|
|
|
|
} else if(sigalg && sec == sec_status_bogus) {
|
|
|
|
algo_needs_set_bogus(&needs,
|
|
|
|
(uint8_t)rrset_get_sig_algo(rrset, i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(sigalg && (alg=algo_needs_missing(&needs)) != 0) {
|
|
|
|
verbose(VERB_ALGO, "rrset failed to verify: "
|
|
|
|
"no valid signatures for %d algorithms",
|
|
|
|
(int)algo_needs_num_missing(&needs));
|
|
|
|
algo_needs_reason(env, alg, reason, "no signatures");
|
|
|
|
} else {
|
|
|
|
verbose(VERB_ALGO, "rrset failed to verify: "
|
|
|
|
"no valid signatures");
|
|
|
|
}
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s)
|
|
|
|
{
|
|
|
|
char buf[256];
|
|
|
|
sldns_lookup_table *t = sldns_lookup_by_id(sldns_algorithms, alg);
|
|
|
|
if(t&&t->name)
|
|
|
|
snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name);
|
|
|
|
else snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s,
|
|
|
|
(unsigned)alg);
|
|
|
|
*reason = regional_strdup(env->scratch, buf);
|
|
|
|
if(!*reason)
|
|
|
|
*reason = s;
|
|
|
|
}
|
|
|
|
|
|
|
|
enum sec_status
|
|
|
|
dnskey_verify_rrset(struct module_env* env, struct val_env* ve,
|
|
|
|
struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
|
|
|
|
size_t dnskey_idx, char** reason)
|
|
|
|
{
|
|
|
|
enum sec_status sec;
|
|
|
|
size_t i, num, numchecked = 0;
|
|
|
|
rbtree_t* sortree = NULL;
|
|
|
|
int buf_canon = 0;
|
|
|
|
uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx);
|
|
|
|
int algo = dnskey_get_algo(dnskey, dnskey_idx);
|
|
|
|
|
|
|
|
num = rrset_get_sigcount(rrset);
|
|
|
|
if(num == 0) {
|
|
|
|
verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
|
|
|
|
"signatures");
|
|
|
|
*reason = "no signatures";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
for(i=0; i<num; i++) {
|
|
|
|
/* see if sig matches keytag and algo */
|
|
|
|
if(algo != rrset_get_sig_algo(rrset, i) ||
|
|
|
|
tag != rrset_get_sig_keytag(rrset, i))
|
|
|
|
continue;
|
|
|
|
buf_canon = 0;
|
|
|
|
sec = dnskey_verify_rrset_sig(env->scratch,
|
|
|
|
env->scratch_buffer, ve, *env->now, rrset,
|
|
|
|
dnskey, dnskey_idx, i, &sortree, &buf_canon, reason);
|
|
|
|
if(sec == sec_status_secure)
|
|
|
|
return sec;
|
|
|
|
numchecked ++;
|
|
|
|
}
|
|
|
|
verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus");
|
|
|
|
if(!numchecked) *reason = "signature missing";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
enum sec_status
|
|
|
|
dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve,
|
|
|
|
time_t now, struct ub_packed_rrset_key* rrset,
|
|
|
|
struct ub_packed_rrset_key* dnskey, size_t sig_idx,
|
|
|
|
struct rbtree_t** sortree, char** reason)
|
|
|
|
{
|
|
|
|
/* find matching keys and check them */
|
|
|
|
enum sec_status sec = sec_status_bogus;
|
|
|
|
uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx);
|
|
|
|
int algo = rrset_get_sig_algo(rrset, sig_idx);
|
|
|
|
size_t i, num = rrset_get_count(dnskey);
|
|
|
|
size_t numchecked = 0;
|
|
|
|
int buf_canon = 0;
|
|
|
|
verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo);
|
|
|
|
if(!dnskey_algo_id_is_supported(algo)) {
|
|
|
|
verbose(VERB_QUERY, "verify sig: unknown algorithm");
|
|
|
|
return sec_status_insecure;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(i=0; i<num; i++) {
|
|
|
|
/* see if key matches keytag and algo */
|
|
|
|
if(algo != dnskey_get_algo(dnskey, i) ||
|
|
|
|
tag != dnskey_calc_keytag(dnskey, i))
|
|
|
|
continue;
|
|
|
|
numchecked ++;
|
|
|
|
|
|
|
|
/* see if key verifies */
|
|
|
|
sec = dnskey_verify_rrset_sig(env->scratch,
|
|
|
|
env->scratch_buffer, ve, now, rrset, dnskey, i,
|
|
|
|
sig_idx, sortree, &buf_canon, reason);
|
|
|
|
if(sec == sec_status_secure)
|
|
|
|
return sec;
|
|
|
|
}
|
|
|
|
if(numchecked == 0) {
|
|
|
|
*reason = "signatures from unknown keys";
|
|
|
|
verbose(VERB_QUERY, "verify: could not find appropriate key");
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* RR entries in a canonical sorted tree of RRs
|
|
|
|
*/
|
|
|
|
struct canon_rr {
|
|
|
|
/** rbtree node, key is this structure */
|
|
|
|
rbnode_t node;
|
|
|
|
/** rrset the RR is in */
|
|
|
|
struct ub_packed_rrset_key* rrset;
|
|
|
|
/** which RR in the rrset */
|
|
|
|
size_t rr_idx;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compare two RR for canonical order, in a field-style sweep.
|
|
|
|
* @param d: rrset data
|
|
|
|
* @param desc: ldns wireformat descriptor.
|
|
|
|
* @param i: first RR to compare
|
|
|
|
* @param j: first RR to compare
|
|
|
|
* @return comparison code.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
canonical_compare_byfield(struct packed_rrset_data* d,
|
|
|
|
const sldns_rr_descriptor* desc, size_t i, size_t j)
|
|
|
|
{
|
|
|
|
/* sweep across rdata, keep track of some state:
|
|
|
|
* which rr field, and bytes left in field.
|
|
|
|
* current position in rdata, length left.
|
|
|
|
* are we in a dname, length left in a label.
|
|
|
|
*/
|
|
|
|
int wfi = -1; /* current wireformat rdata field (rdf) */
|
|
|
|
int wfj = -1;
|
|
|
|
uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */
|
|
|
|
uint8_t* dj = d->rr_data[j]+2;
|
|
|
|
size_t ilen = d->rr_len[i]-2; /* length left in rdata */
|
|
|
|
size_t jlen = d->rr_len[j]-2;
|
|
|
|
int dname_i = 0; /* true if these bytes are part of a name */
|
|
|
|
int dname_j = 0;
|
|
|
|
size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/
|
|
|
|
size_t lablen_j = 0; /* otherwise remaining length of rdf or label */
|
|
|
|
int dname_num_i = (int)desc->_dname_count; /* decreased at root label */
|
|
|
|
int dname_num_j = (int)desc->_dname_count;
|
|
|
|
|
|
|
|
/* loop while there are rdata bytes available for both rrs,
|
|
|
|
* and still some lowercasing needs to be done; either the dnames
|
|
|
|
* have not been reached yet, or they are currently being processed */
|
|
|
|
while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) {
|
|
|
|
/* compare these two bytes */
|
|
|
|
/* lowercase if in a dname and not a label length byte */
|
|
|
|
if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
|
|
|
|
!= ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)
|
|
|
|
) {
|
|
|
|
if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
|
|
|
|
< ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj))
|
|
|
|
return -1;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
ilen--;
|
|
|
|
jlen--;
|
|
|
|
/* bytes are equal */
|
|
|
|
|
|
|
|
/* advance field i */
|
|
|
|
/* lablen 0 means that this byte is the first byte of the
|
|
|
|
* next rdata field; inspect this rdata field and setup
|
|
|
|
* to process the rest of this rdata field.
|
|
|
|
* The reason to first read the byte, then setup the rdf,
|
|
|
|
* is that we are then sure the byte is available and short
|
|
|
|
* rdata is handled gracefully (even if it is a formerr). */
|
|
|
|
if(lablen_i == 0) {
|
|
|
|
if(dname_i) {
|
|
|
|
/* scan this dname label */
|
|
|
|
/* capture length to lowercase */
|
|
|
|
lablen_i = (size_t)*di;
|
|
|
|
if(lablen_i == 0) {
|
|
|
|
/* end root label */
|
|
|
|
dname_i = 0;
|
|
|
|
dname_num_i--;
|
|
|
|
/* if dname num is 0, then the
|
|
|
|
* remainder is binary only */
|
|
|
|
if(dname_num_i == 0)
|
|
|
|
lablen_i = ilen;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
/* scan this rdata field */
|
|
|
|
wfi++;
|
|
|
|
if(desc->_wireformat[wfi]
|
|
|
|
== LDNS_RDF_TYPE_DNAME) {
|
|
|
|
dname_i = 1;
|
|
|
|
lablen_i = (size_t)*di;
|
|
|
|
if(lablen_i == 0) {
|
|
|
|
dname_i = 0;
|
|
|
|
dname_num_i--;
|
|
|
|
if(dname_num_i == 0)
|
|
|
|
lablen_i = ilen;
|
|
|
|
}
|
|
|
|
} else if(desc->_wireformat[wfi]
|
|
|
|
== LDNS_RDF_TYPE_STR)
|
|
|
|
lablen_i = (size_t)*di;
|
|
|
|
else lablen_i = get_rdf_size(
|
|
|
|
desc->_wireformat[wfi]) - 1;
|
|
|
|
}
|
|
|
|
} else lablen_i--;
|
|
|
|
|
|
|
|
/* advance field j; same as for i */
|
|
|
|
if(lablen_j == 0) {
|
|
|
|
if(dname_j) {
|
|
|
|
lablen_j = (size_t)*dj;
|
|
|
|
if(lablen_j == 0) {
|
|
|
|
dname_j = 0;
|
|
|
|
dname_num_j--;
|
|
|
|
if(dname_num_j == 0)
|
|
|
|
lablen_j = jlen;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
wfj++;
|
|
|
|
if(desc->_wireformat[wfj]
|
|
|
|
== LDNS_RDF_TYPE_DNAME) {
|
|
|
|
dname_j = 1;
|
|
|
|
lablen_j = (size_t)*dj;
|
|
|
|
if(lablen_j == 0) {
|
|
|
|
dname_j = 0;
|
|
|
|
dname_num_j--;
|
|
|
|
if(dname_num_j == 0)
|
|
|
|
lablen_j = jlen;
|
|
|
|
}
|
|
|
|
} else if(desc->_wireformat[wfj]
|
|
|
|
== LDNS_RDF_TYPE_STR)
|
|
|
|
lablen_j = (size_t)*dj;
|
|
|
|
else lablen_j = get_rdf_size(
|
|
|
|
desc->_wireformat[wfj]) - 1;
|
|
|
|
}
|
|
|
|
} else lablen_j--;
|
|
|
|
di++;
|
|
|
|
dj++;
|
|
|
|
}
|
|
|
|
/* end of the loop; because we advanced byte by byte; now we have
|
|
|
|
* that the rdata has ended, or that there is a binary remainder */
|
|
|
|
/* shortest first */
|
|
|
|
if(ilen == 0 && jlen == 0)
|
|
|
|
return 0;
|
|
|
|
if(ilen == 0)
|
|
|
|
return -1;
|
|
|
|
if(jlen == 0)
|
|
|
|
return 1;
|
|
|
|
/* binary remainder, capture comparison in wfi variable */
|
|
|
|
if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0)
|
|
|
|
return wfi;
|
|
|
|
if(ilen < jlen)
|
|
|
|
return -1;
|
|
|
|
if(jlen < ilen)
|
|
|
|
return 1;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Compare two RRs in the same RRset and determine their relative
|
|
|
|
* canonical order.
|
|
|
|
* @param rrset: the rrset in which to perform compares.
|
|
|
|
* @param i: first RR to compare
|
|
|
|
* @param j: first RR to compare
|
|
|
|
* @return 0 if RR i== RR j, -1 if <, +1 if >.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j)
|
|
|
|
{
|
|
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)
|
|
|
|
rrset->entry.data;
|
|
|
|
const sldns_rr_descriptor* desc;
|
|
|
|
uint16_t type = ntohs(rrset->rk.type);
|
|
|
|
size_t minlen;
|
|
|
|
int c;
|
|
|
|
|
|
|
|
if(i==j)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
switch(type) {
|
|
|
|
/* These RR types have only a name as RDATA.
|
|
|
|
* This name has to be canonicalized.*/
|
|
|
|
case LDNS_RR_TYPE_NS:
|
|
|
|
case LDNS_RR_TYPE_MD:
|
|
|
|
case LDNS_RR_TYPE_MF:
|
|
|
|
case LDNS_RR_TYPE_CNAME:
|
|
|
|
case LDNS_RR_TYPE_MB:
|
|
|
|
case LDNS_RR_TYPE_MG:
|
|
|
|
case LDNS_RR_TYPE_MR:
|
|
|
|
case LDNS_RR_TYPE_PTR:
|
|
|
|
case LDNS_RR_TYPE_DNAME:
|
|
|
|
/* the wireread function has already checked these
|
|
|
|
* dname's for correctness, and this double checks */
|
|
|
|
if(!dname_valid(d->rr_data[i]+2, d->rr_len[i]-2) ||
|
|
|
|
!dname_valid(d->rr_data[j]+2, d->rr_len[j]-2))
|
|
|
|
return 0;
|
|
|
|
return query_dname_compare(d->rr_data[i]+2,
|
|
|
|
d->rr_data[j]+2);
|
|
|
|
|
|
|
|
/* These RR types have STR and fixed size rdata fields
|
|
|
|
* before one or more name fields that need canonicalizing,
|
|
|
|
* and after that a byte-for byte remainder can be compared.
|
|
|
|
*/
|
|
|
|
/* type starts with the name; remainder is binary compared */
|
|
|
|
case LDNS_RR_TYPE_NXT:
|
|
|
|
/* use rdata field formats */
|
|
|
|
case LDNS_RR_TYPE_MINFO:
|
|
|
|
case LDNS_RR_TYPE_RP:
|
|
|
|
case LDNS_RR_TYPE_SOA:
|
|
|
|
case LDNS_RR_TYPE_RT:
|
|
|
|
case LDNS_RR_TYPE_AFSDB:
|
|
|
|
case LDNS_RR_TYPE_KX:
|
|
|
|
case LDNS_RR_TYPE_MX:
|
|
|
|
case LDNS_RR_TYPE_SIG:
|
|
|
|
/* RRSIG signer name has to be downcased */
|
|
|
|
case LDNS_RR_TYPE_RRSIG:
|
|
|
|
case LDNS_RR_TYPE_PX:
|
|
|
|
case LDNS_RR_TYPE_NAPTR:
|
|
|
|
case LDNS_RR_TYPE_SRV:
|
|
|
|
desc = sldns_rr_descript(type);
|
|
|
|
log_assert(desc);
|
|
|
|
/* this holds for the types that need canonicalizing */
|
|
|
|
log_assert(desc->_minimum == desc->_maximum);
|
|
|
|
return canonical_compare_byfield(d, desc, i, j);
|
|
|
|
|
|
|
|
case LDNS_RR_TYPE_HINFO: /* no longer downcased */
|
|
|
|
case LDNS_RR_TYPE_NSEC:
|
|
|
|
default:
|
|
|
|
/* For unknown RR types, or types not listed above,
|
|
|
|
* no canonicalization is needed, do binary compare */
|
|
|
|
/* byte for byte compare, equal means shortest first*/
|
|
|
|
minlen = d->rr_len[i]-2;
|
|
|
|
if(minlen > d->rr_len[j]-2)
|
|
|
|
minlen = d->rr_len[j]-2;
|
|
|
|
c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen);
|
|
|
|
if(c!=0)
|
|
|
|
return c;
|
|
|
|
/* rdata equal, shortest is first */
|
|
|
|
if(d->rr_len[i] < d->rr_len[j])
|
|
|
|
return -1;
|
|
|
|
if(d->rr_len[i] > d->rr_len[j])
|
|
|
|
return 1;
|
|
|
|
/* rdata equal, length equal */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int
|
|
|
|
canonical_tree_compare(const void* k1, const void* k2)
|
|
|
|
{
|
|
|
|
struct canon_rr* r1 = (struct canon_rr*)k1;
|
|
|
|
struct canon_rr* r2 = (struct canon_rr*)k2;
|
|
|
|
log_assert(r1->rrset == r2->rrset);
|
|
|
|
return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sort RRs for rrset in canonical order.
|
|
|
|
* Does not actually canonicalize the RR rdatas.
|
|
|
|
* Does not touch rrsigs.
|
|
|
|
* @param rrset: to sort.
|
|
|
|
* @param d: rrset data.
|
|
|
|
* @param sortree: tree to sort into.
|
|
|
|
* @param rrs: rr storage.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d,
|
|
|
|
rbtree_t* sortree, struct canon_rr* rrs)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
/* insert into rbtree to sort and detect duplicates */
|
|
|
|
for(i=0; i<d->count; i++) {
|
|
|
|
rrs[i].node.key = &rrs[i];
|
|
|
|
rrs[i].rrset = rrset;
|
|
|
|
rrs[i].rr_idx = i;
|
|
|
|
if(!rbtree_insert(sortree, &rrs[i].node)) {
|
|
|
|
/* this was a duplicate */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Inser canonical owner name into buffer.
|
|
|
|
* @param buf: buffer to insert into at current position.
|
|
|
|
* @param k: rrset with its owner name.
|
|
|
|
* @param sig: signature with signer name and label count.
|
|
|
|
* must be length checked, at least 18 bytes long.
|
|
|
|
* @param can_owner: position in buffer returned for future use.
|
|
|
|
* @param can_owner_len: length of canonical owner name.
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k,
|
|
|
|
uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len)
|
|
|
|
{
|
|
|
|
int rrsig_labels = (int)sig[3];
|
|
|
|
int fqdn_labels = dname_signame_label_count(k->rk.dname);
|
|
|
|
*can_owner = sldns_buffer_current(buf);
|
|
|
|
if(rrsig_labels == fqdn_labels) {
|
|
|
|
/* no change */
|
|
|
|
sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len);
|
|
|
|
query_dname_tolower(*can_owner);
|
|
|
|
*can_owner_len = k->rk.dname_len;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
log_assert(rrsig_labels < fqdn_labels);
|
|
|
|
/* *. | fqdn(rightmost rrsig_labels) */
|
|
|
|
if(rrsig_labels < fqdn_labels) {
|
|
|
|
int i;
|
|
|
|
uint8_t* nm = k->rk.dname;
|
|
|
|
size_t len = k->rk.dname_len;
|
|
|
|
/* so skip fqdn_labels-rrsig_labels */
|
|
|
|
for(i=0; i<fqdn_labels-rrsig_labels; i++) {
|
|
|
|
dname_remove_label(&nm, &len);
|
|
|
|
}
|
|
|
|
*can_owner_len = len+2;
|
|
|
|
sldns_buffer_write(buf, (uint8_t*)"\001*", 2);
|
|
|
|
sldns_buffer_write(buf, nm, len);
|
|
|
|
query_dname_tolower(*can_owner);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Canonicalize Rdata in buffer.
|
|
|
|
* @param buf: buffer at position just after the rdata.
|
|
|
|
* @param rrset: rrset with type.
|
|
|
|
* @param len: length of the rdata (including rdatalen uint16).
|
|
|
|
*/
|
|
|
|
static void
|
|
|
|
canonicalize_rdata(sldns_buffer* buf, struct ub_packed_rrset_key* rrset,
|
|
|
|
size_t len)
|
|
|
|
{
|
|
|
|
uint8_t* datstart = sldns_buffer_current(buf)-len+2;
|
|
|
|
switch(ntohs(rrset->rk.type)) {
|
|
|
|
case LDNS_RR_TYPE_NXT:
|
|
|
|
case LDNS_RR_TYPE_NS:
|
|
|
|
case LDNS_RR_TYPE_MD:
|
|
|
|
case LDNS_RR_TYPE_MF:
|
|
|
|
case LDNS_RR_TYPE_CNAME:
|
|
|
|
case LDNS_RR_TYPE_MB:
|
|
|
|
case LDNS_RR_TYPE_MG:
|
|
|
|
case LDNS_RR_TYPE_MR:
|
|
|
|
case LDNS_RR_TYPE_PTR:
|
|
|
|
case LDNS_RR_TYPE_DNAME:
|
|
|
|
/* type only has a single argument, the name */
|
|
|
|
query_dname_tolower(datstart);
|
|
|
|
return;
|
|
|
|
case LDNS_RR_TYPE_MINFO:
|
|
|
|
case LDNS_RR_TYPE_RP:
|
|
|
|
case LDNS_RR_TYPE_SOA:
|
|
|
|
/* two names after another */
|
|
|
|
query_dname_tolower(datstart);
|
|
|
|
query_dname_tolower(datstart +
|
|
|
|
dname_valid(datstart, len-2));
|
|
|
|
return;
|
|
|
|
case LDNS_RR_TYPE_RT:
|
|
|
|
case LDNS_RR_TYPE_AFSDB:
|
|
|
|
case LDNS_RR_TYPE_KX:
|
|
|
|
case LDNS_RR_TYPE_MX:
|
|
|
|
/* skip fixed part */
|
|
|
|
if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */
|
|
|
|
return;
|
|
|
|
datstart += 2;
|
|
|
|
query_dname_tolower(datstart);
|
|
|
|
return;
|
|
|
|
case LDNS_RR_TYPE_SIG:
|
|
|
|
/* downcase the RRSIG, compat with BIND (kept it from SIG) */
|
|
|
|
case LDNS_RR_TYPE_RRSIG:
|
|
|
|
/* skip fixed part */
|
|
|
|
if(len < 2+18+1)
|
|
|
|
return;
|
|
|
|
datstart += 18;
|
|
|
|
query_dname_tolower(datstart);
|
|
|
|
return;
|
|
|
|
case LDNS_RR_TYPE_PX:
|
|
|
|
/* skip, then two names after another */
|
|
|
|
if(len < 2+2+1)
|
|
|
|
return;
|
|
|
|
datstart += 2;
|
|
|
|
query_dname_tolower(datstart);
|
|
|
|
query_dname_tolower(datstart +
|
|
|
|
dname_valid(datstart, len-2-2));
|
|
|
|
return;
|
|
|
|
case LDNS_RR_TYPE_NAPTR:
|
|
|
|
if(len < 2+4)
|
|
|
|
return;
|
|
|
|
len -= 2+4;
|
|
|
|
datstart += 4;
|
|
|
|
if(len < (size_t)datstart[0]+1) /* skip text field */
|
|
|
|
return;
|
|
|
|
len -= (size_t)datstart[0]+1;
|
|
|
|
datstart += (size_t)datstart[0]+1;
|
|
|
|
if(len < (size_t)datstart[0]+1) /* skip text field */
|
|
|
|
return;
|
|
|
|
len -= (size_t)datstart[0]+1;
|
|
|
|
datstart += (size_t)datstart[0]+1;
|
|
|
|
if(len < (size_t)datstart[0]+1) /* skip text field */
|
|
|
|
return;
|
|
|
|
len -= (size_t)datstart[0]+1;
|
|
|
|
datstart += (size_t)datstart[0]+1;
|
|
|
|
if(len < 1) /* check name is at least 1 byte*/
|
|
|
|
return;
|
|
|
|
query_dname_tolower(datstart);
|
|
|
|
return;
|
|
|
|
case LDNS_RR_TYPE_SRV:
|
|
|
|
/* skip fixed part */
|
|
|
|
if(len < 2+6+1)
|
|
|
|
return;
|
|
|
|
datstart += 6;
|
|
|
|
query_dname_tolower(datstart);
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* do not canonicalize NSEC rdata name, compat with
|
|
|
|
* from bind 9.4 signer, where it does not do so */
|
|
|
|
case LDNS_RR_TYPE_NSEC: /* type starts with the name */
|
|
|
|
case LDNS_RR_TYPE_HINFO: /* not downcased */
|
|
|
|
/* A6 not supported */
|
|
|
|
default:
|
|
|
|
/* nothing to do for unknown types */
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int rrset_canonical_equal(struct regional* region,
|
|
|
|
struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
|
|
|
|
{
|
|
|
|
struct rbtree_t sortree1, sortree2;
|
|
|
|
struct canon_rr *rrs1, *rrs2, *p1, *p2;
|
|
|
|
struct packed_rrset_data* d1=(struct packed_rrset_data*)k1->entry.data;
|
|
|
|
struct packed_rrset_data* d2=(struct packed_rrset_data*)k2->entry.data;
|
|
|
|
struct ub_packed_rrset_key fk;
|
|
|
|
struct packed_rrset_data fd;
|
|
|
|
size_t flen[2];
|
|
|
|
uint8_t* fdata[2];
|
|
|
|
|
|
|
|
/* basic compare */
|
|
|
|
if(k1->rk.dname_len != k2->rk.dname_len ||
|
|
|
|
k1->rk.flags != k2->rk.flags ||
|
|
|
|
k1->rk.type != k2->rk.type ||
|
|
|
|
k1->rk.rrset_class != k2->rk.rrset_class ||
|
|
|
|
query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
|
|
|
|
return 0;
|
|
|
|
if(d1->ttl != d2->ttl ||
|
|
|
|
d1->count != d2->count ||
|
|
|
|
d1->rrsig_count != d2->rrsig_count ||
|
|
|
|
d1->trust != d2->trust ||
|
|
|
|
d1->security != d2->security)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* init */
|
|
|
|
memset(&fk, 0, sizeof(fk));
|
|
|
|
memset(&fd, 0, sizeof(fd));
|
|
|
|
fk.entry.data = &fd;
|
|
|
|
fd.count = 2;
|
|
|
|
fd.rr_len = flen;
|
|
|
|
fd.rr_data = fdata;
|
|
|
|
rbtree_init(&sortree1, &canonical_tree_compare);
|
|
|
|
rbtree_init(&sortree2, &canonical_tree_compare);
|
2015-04-02 03:16:18 -06:00
|
|
|
if(d1->count > RR_COUNT_MAX || d2->count > RR_COUNT_MAX)
|
|
|
|
return 1; /* protection against integer overflow */
|
2014-10-05 15:44:31 -06:00
|
|
|
rrs1 = regional_alloc(region, sizeof(struct canon_rr)*d1->count);
|
|
|
|
rrs2 = regional_alloc(region, sizeof(struct canon_rr)*d2->count);
|
|
|
|
if(!rrs1 || !rrs2) return 1; /* alloc failure */
|
|
|
|
|
|
|
|
/* sort */
|
|
|
|
canonical_sort(k1, d1, &sortree1, rrs1);
|
|
|
|
canonical_sort(k2, d2, &sortree2, rrs2);
|
|
|
|
|
|
|
|
/* compare canonical-sorted RRs for canonical-equality */
|
|
|
|
if(sortree1.count != sortree2.count)
|
|
|
|
return 0;
|
|
|
|
p1 = (struct canon_rr*)rbtree_first(&sortree1);
|
|
|
|
p2 = (struct canon_rr*)rbtree_first(&sortree2);
|
|
|
|
while(p1 != (struct canon_rr*)RBTREE_NULL &&
|
|
|
|
p2 != (struct canon_rr*)RBTREE_NULL) {
|
|
|
|
flen[0] = d1->rr_len[p1->rr_idx];
|
|
|
|
flen[1] = d2->rr_len[p2->rr_idx];
|
|
|
|
fdata[0] = d1->rr_data[p1->rr_idx];
|
|
|
|
fdata[1] = d2->rr_data[p2->rr_idx];
|
|
|
|
|
|
|
|
if(canonical_compare(&fk, 0, 1) != 0)
|
|
|
|
return 0;
|
|
|
|
p1 = (struct canon_rr*)rbtree_next(&p1->node);
|
|
|
|
p2 = (struct canon_rr*)rbtree_next(&p2->node);
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Create canonical form of rrset in the scratch buffer.
|
|
|
|
* @param region: temporary region.
|
|
|
|
* @param buf: the buffer to use.
|
|
|
|
* @param k: the rrset to insert.
|
|
|
|
* @param sig: RRSIG rdata to include.
|
|
|
|
* @param siglen: RRSIG rdata len excluding signature field, but inclusive
|
|
|
|
* signer name length.
|
|
|
|
* @param sortree: if NULL is passed a new sorted rrset tree is built.
|
|
|
|
* Otherwise it is reused.
|
|
|
|
* @return false on alloc error.
|
|
|
|
*/
|
|
|
|
static int
|
|
|
|
rrset_canonical(struct regional* region, sldns_buffer* buf,
|
|
|
|
struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen,
|
|
|
|
struct rbtree_t** sortree)
|
|
|
|
{
|
|
|
|
struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
|
|
|
|
uint8_t* can_owner = NULL;
|
|
|
|
size_t can_owner_len = 0;
|
|
|
|
struct canon_rr* walk;
|
|
|
|
struct canon_rr* rrs;
|
|
|
|
|
|
|
|
if(!*sortree) {
|
|
|
|
*sortree = (struct rbtree_t*)regional_alloc(region,
|
|
|
|
sizeof(rbtree_t));
|
|
|
|
if(!*sortree)
|
|
|
|
return 0;
|
2015-04-02 03:16:18 -06:00
|
|
|
if(d->count > RR_COUNT_MAX)
|
|
|
|
return 0; /* integer overflow protection */
|
2014-10-05 15:44:31 -06:00
|
|
|
rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count);
|
|
|
|
if(!rrs) {
|
|
|
|
*sortree = NULL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
rbtree_init(*sortree, &canonical_tree_compare);
|
|
|
|
canonical_sort(k, d, *sortree, rrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
sldns_buffer_clear(buf);
|
|
|
|
sldns_buffer_write(buf, sig, siglen);
|
|
|
|
/* canonicalize signer name */
|
|
|
|
query_dname_tolower(sldns_buffer_begin(buf)+18);
|
|
|
|
RBTREE_FOR(walk, struct canon_rr*, (*sortree)) {
|
|
|
|
/* see if there is enough space left in the buffer */
|
|
|
|
if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4
|
|
|
|
+ d->rr_len[walk->rr_idx]) {
|
|
|
|
log_err("verify: failed to canonicalize, "
|
|
|
|
"rrset too big");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
/* determine canonical owner name */
|
|
|
|
if(can_owner)
|
|
|
|
sldns_buffer_write(buf, can_owner, can_owner_len);
|
|
|
|
else insert_can_owner(buf, k, sig, &can_owner,
|
|
|
|
&can_owner_len);
|
|
|
|
sldns_buffer_write(buf, &k->rk.type, 2);
|
|
|
|
sldns_buffer_write(buf, &k->rk.rrset_class, 2);
|
|
|
|
sldns_buffer_write(buf, sig+4, 4);
|
|
|
|
sldns_buffer_write(buf, d->rr_data[walk->rr_idx],
|
|
|
|
d->rr_len[walk->rr_idx]);
|
|
|
|
canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]);
|
|
|
|
}
|
|
|
|
sldns_buffer_flip(buf);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** pretty print rrsig error with dates */
|
|
|
|
static void
|
|
|
|
sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now)
|
|
|
|
{
|
|
|
|
struct tm tm;
|
|
|
|
char expi_buf[16];
|
|
|
|
char incep_buf[16];
|
|
|
|
char now_buf[16];
|
|
|
|
time_t te, ti, tn;
|
|
|
|
|
|
|
|
if(verbosity < VERB_QUERY)
|
|
|
|
return;
|
|
|
|
te = (time_t)expi;
|
|
|
|
ti = (time_t)incep;
|
|
|
|
tn = (time_t)now;
|
|
|
|
memset(&tm, 0, sizeof(tm));
|
|
|
|
if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm)
|
|
|
|
&&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm)
|
|
|
|
&&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) {
|
|
|
|
log_info("%s expi=%s incep=%s now=%s", str, expi_buf,
|
|
|
|
incep_buf, now_buf);
|
|
|
|
} else
|
|
|
|
log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi,
|
|
|
|
(unsigned)incep, (unsigned)now);
|
|
|
|
}
|
|
|
|
|
|
|
|
/** check rrsig dates */
|
|
|
|
static int
|
|
|
|
check_dates(struct val_env* ve, uint32_t unow,
|
|
|
|
uint8_t* expi_p, uint8_t* incep_p, char** reason)
|
|
|
|
{
|
|
|
|
/* read out the dates */
|
|
|
|
int32_t expi, incep, now;
|
|
|
|
memmove(&expi, expi_p, sizeof(expi));
|
|
|
|
memmove(&incep, incep_p, sizeof(incep));
|
|
|
|
expi = ntohl(expi);
|
|
|
|
incep = ntohl(incep);
|
|
|
|
|
|
|
|
/* get current date */
|
|
|
|
if(ve->date_override) {
|
|
|
|
if(ve->date_override == -1) {
|
|
|
|
verbose(VERB_ALGO, "date override: ignore date");
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
now = ve->date_override;
|
|
|
|
verbose(VERB_ALGO, "date override option %d", (int)now);
|
|
|
|
} else now = (int32_t)unow;
|
|
|
|
|
|
|
|
/* check them */
|
|
|
|
if(incep - expi > 0) {
|
|
|
|
sigdate_error("verify: inception after expiration, "
|
|
|
|
"signature bad", expi, incep, now);
|
|
|
|
*reason = "signature inception after expiration";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if(incep - now > 0) {
|
|
|
|
/* within skew ? (calc here to avoid calculation normally) */
|
|
|
|
int32_t skew = (expi-incep)/10;
|
|
|
|
if(skew < ve->skew_min) skew = ve->skew_min;
|
|
|
|
if(skew > ve->skew_max) skew = ve->skew_max;
|
|
|
|
if(incep - now > skew) {
|
|
|
|
sigdate_error("verify: signature bad, current time is"
|
|
|
|
" before inception date", expi, incep, now);
|
|
|
|
*reason = "signature before inception date";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
sigdate_error("verify warning suspicious signature inception "
|
|
|
|
" or bad local clock", expi, incep, now);
|
|
|
|
}
|
|
|
|
if(now - expi > 0) {
|
|
|
|
int32_t skew = (expi-incep)/10;
|
|
|
|
if(skew < ve->skew_min) skew = ve->skew_min;
|
|
|
|
if(skew > ve->skew_max) skew = ve->skew_max;
|
|
|
|
if(now - expi > skew) {
|
|
|
|
sigdate_error("verify: signature expired", expi,
|
|
|
|
incep, now);
|
|
|
|
*reason = "signature expired";
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
sigdate_error("verify warning suspicious signature expiration "
|
|
|
|
" or bad local clock", expi, incep, now);
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** adjust rrset TTL for verified rrset, compare to original TTL and expi */
|
|
|
|
static void
|
|
|
|
adjust_ttl(struct val_env* ve, uint32_t unow,
|
|
|
|
struct ub_packed_rrset_key* rrset, uint8_t* orig_p,
|
|
|
|
uint8_t* expi_p, uint8_t* incep_p)
|
|
|
|
{
|
|
|
|
struct packed_rrset_data* d =
|
|
|
|
(struct packed_rrset_data*)rrset->entry.data;
|
|
|
|
/* read out the dates */
|
|
|
|
int32_t origttl, expittl, expi, incep, now;
|
|
|
|
memmove(&origttl, orig_p, sizeof(origttl));
|
|
|
|
memmove(&expi, expi_p, sizeof(expi));
|
|
|
|
memmove(&incep, incep_p, sizeof(incep));
|
|
|
|
expi = ntohl(expi);
|
|
|
|
incep = ntohl(incep);
|
|
|
|
origttl = ntohl(origttl);
|
|
|
|
|
|
|
|
/* get current date */
|
|
|
|
if(ve->date_override) {
|
|
|
|
now = ve->date_override;
|
|
|
|
} else now = (int32_t)unow;
|
|
|
|
expittl = expi - now;
|
|
|
|
|
|
|
|
/* so now:
|
|
|
|
* d->ttl: rrset ttl read from message or cache. May be reduced
|
|
|
|
* origttl: original TTL from signature, authoritative TTL max.
|
|
|
|
* expittl: TTL until the signature expires.
|
|
|
|
*
|
|
|
|
* Use the smallest of these.
|
|
|
|
*/
|
|
|
|
if(d->ttl > (time_t)origttl) {
|
|
|
|
verbose(VERB_QUERY, "rrset TTL larger than original TTL,"
|
|
|
|
" adjusting TTL downwards");
|
|
|
|
d->ttl = origttl;
|
|
|
|
}
|
|
|
|
if(expittl > 0 && d->ttl > (time_t)expittl) {
|
|
|
|
verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl,"
|
|
|
|
" adjusting TTL downwards");
|
|
|
|
d->ttl = expittl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
enum sec_status
|
|
|
|
dnskey_verify_rrset_sig(struct regional* region, sldns_buffer* buf,
|
|
|
|
struct val_env* ve, time_t now,
|
|
|
|
struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
|
|
|
|
size_t dnskey_idx, size_t sig_idx,
|
|
|
|
struct rbtree_t** sortree, int* buf_canon, char** reason)
|
|
|
|
{
|
|
|
|
enum sec_status sec;
|
|
|
|
uint8_t* sig; /* RRSIG rdata */
|
|
|
|
size_t siglen;
|
|
|
|
size_t rrnum = rrset_get_count(rrset);
|
|
|
|
uint8_t* signer; /* rrsig signer name */
|
|
|
|
size_t signer_len;
|
|
|
|
unsigned char* sigblock; /* signature rdata field */
|
|
|
|
unsigned int sigblock_len;
|
|
|
|
uint16_t ktag; /* DNSKEY key tag */
|
|
|
|
unsigned char* key; /* public key rdata field */
|
|
|
|
unsigned int keylen;
|
|
|
|
rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen);
|
|
|
|
/* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */
|
|
|
|
if(siglen < 2+20) {
|
|
|
|
verbose(VERB_QUERY, "verify: signature too short");
|
|
|
|
*reason = "signature too short";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) {
|
|
|
|
verbose(VERB_QUERY, "verify: dnskey without ZSK flag");
|
|
|
|
*reason = "dnskey without ZSK flag";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) {
|
|
|
|
/* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */
|
|
|
|
verbose(VERB_QUERY, "verify: dnskey has wrong key protocol");
|
|
|
|
*reason = "dnskey has wrong protocolnumber";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* verify as many fields in rrsig as possible */
|
|
|
|
signer = sig+2+18;
|
|
|
|
signer_len = dname_valid(signer, siglen-2-18);
|
|
|
|
if(!signer_len) {
|
|
|
|
verbose(VERB_QUERY, "verify: malformed signer name");
|
|
|
|
*reason = "signer name malformed";
|
|
|
|
return sec_status_bogus; /* signer name invalid */
|
|
|
|
}
|
|
|
|
if(!dname_subdomain_c(rrset->rk.dname, signer)) {
|
|
|
|
verbose(VERB_QUERY, "verify: signer name is off-tree");
|
|
|
|
*reason = "signer name off-tree";
|
|
|
|
return sec_status_bogus; /* signer name offtree */
|
|
|
|
}
|
|
|
|
sigblock = (unsigned char*)signer+signer_len;
|
|
|
|
if(siglen < 2+18+signer_len+1) {
|
|
|
|
verbose(VERB_QUERY, "verify: too short, no signature data");
|
|
|
|
*reason = "signature too short, no signature data";
|
|
|
|
return sec_status_bogus; /* sig rdf is < 1 byte */
|
|
|
|
}
|
|
|
|
sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len);
|
|
|
|
|
|
|
|
/* verify key dname == sig signer name */
|
|
|
|
if(query_dname_compare(signer, dnskey->rk.dname) != 0) {
|
|
|
|
verbose(VERB_QUERY, "verify: wrong key for rrsig");
|
|
|
|
log_nametypeclass(VERB_QUERY, "RRSIG signername is",
|
|
|
|
signer, 0, 0);
|
|
|
|
log_nametypeclass(VERB_QUERY, "the key name is",
|
|
|
|
dnskey->rk.dname, 0, 0);
|
|
|
|
*reason = "signer name mismatches key name";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* verify covered type */
|
|
|
|
/* memcmp works because type is in network format for rrset */
|
|
|
|
if(memcmp(sig+2, &rrset->rk.type, 2) != 0) {
|
|
|
|
verbose(VERB_QUERY, "verify: wrong type covered");
|
|
|
|
*reason = "signature covers wrong type";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
/* verify keytag and sig algo (possibly again) */
|
|
|
|
if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) {
|
|
|
|
verbose(VERB_QUERY, "verify: wrong algorithm");
|
|
|
|
*reason = "signature has wrong algorithm";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx));
|
|
|
|
if(memcmp(sig+2+16, &ktag, 2) != 0) {
|
|
|
|
verbose(VERB_QUERY, "verify: wrong keytag");
|
|
|
|
*reason = "signature has wrong keytag";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* verify labels is in a valid range */
|
|
|
|
if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) {
|
|
|
|
verbose(VERB_QUERY, "verify: labelcount out of range");
|
|
|
|
*reason = "signature labelcount out of range";
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* original ttl, always ok */
|
|
|
|
|
|
|
|
if(!*buf_canon) {
|
|
|
|
/* create rrset canonical format in buffer, ready for
|
|
|
|
* signature */
|
|
|
|
if(!rrset_canonical(region, buf, rrset, sig+2,
|
|
|
|
18 + signer_len, sortree)) {
|
|
|
|
log_err("verify: failed due to alloc error");
|
|
|
|
return sec_status_unchecked;
|
|
|
|
}
|
|
|
|
*buf_canon = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* check that dnskey is available */
|
|
|
|
dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen);
|
|
|
|
if(!key) {
|
|
|
|
verbose(VERB_QUERY, "verify: short DNSKEY RR");
|
|
|
|
return sec_status_unchecked;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* verify */
|
|
|
|
sec = verify_canonrrset(buf, (int)sig[2+2],
|
|
|
|
sigblock, sigblock_len, key, keylen, reason);
|
|
|
|
|
|
|
|
if(sec == sec_status_secure) {
|
|
|
|
/* check if TTL is too high - reduce if so */
|
|
|
|
adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12);
|
|
|
|
|
|
|
|
/* verify inception, expiration dates
|
|
|
|
* Do this last so that if you ignore expired-sigs the
|
|
|
|
* rest is sure to be OK. */
|
|
|
|
if(!check_dates(ve, now, sig+2+8, sig+2+12, reason)) {
|
|
|
|
return sec_status_bogus;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return sec;
|
|
|
|
}
|