monero/tests/unit_tests/ringct.cpp

1271 lines
42 KiB
C++
Raw Normal View History

// Copyright (c) 2014-2020, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include "gtest/gtest.h"
#include <cstdint>
2016-05-27 12:40:18 -06:00
#include <algorithm>
#include <sstream>
#include "ringct/rctTypes.h"
#include "ringct/rctSigs.h"
#include "ringct/rctOps.h"
#include "device/device.hpp"
#include "string_tools.h"
using namespace std;
using namespace crypto;
using namespace rct;
2016-11-17 16:17:21 -07:00
TEST(ringct, Borromean)
{
int j = 0;
2016-11-17 16:17:21 -07:00
//Tests for Borromean signatures
//#boro true one, false one, C != sum Ci, and one out of the range..
int N = 64;
key64 xv;
key64 P1v;
key64 P2v;
bits indi;
for (j = 0 ; j < N ; j++) {
indi[j] = (int)randXmrAmount(2);
xv[j] = skGen();
if ( (int)indi[j] == 0 ) {
scalarmultBase(P1v[j], xv[j]);
} else {
addKeys1(P1v[j], xv[j], H2[j]);
}
subKeys(P2v[j], P1v[j], H2[j]);
}
//#true one
boroSig bb = genBorromean(xv, P1v, P2v, indi);
2016-11-17 16:17:21 -07:00
ASSERT_TRUE(verifyBorromean(bb, P1v, P2v));
//#false one
indi[3] = (indi[3] + 1) % 2;
2016-11-17 16:17:21 -07:00
bb = genBorromean(xv, P1v, P2v, indi);
ASSERT_FALSE(verifyBorromean(bb, P1v, P2v));
//#true one again
indi[3] = (indi[3] + 1) % 2;
2016-11-17 16:17:21 -07:00
bb = genBorromean(xv, P1v, P2v, indi);
ASSERT_TRUE(verifyBorromean(bb, P1v, P2v));
//#false one
2016-11-17 16:17:21 -07:00
bb = genBorromean(xv, P2v, P1v, indi);
ASSERT_FALSE(verifyBorromean(bb, P1v, P2v));
}
TEST(ringct, MG_sigs)
{
int j = 0;
int N = 0;
//Tests for MG Sigs
//#MG sig: true one
N = 3;// #cols
int R = 3;// #rows
keyV xtmp = skvGen(R);
keyM xm = keyMInit(R, N);// = [[None]*N] #just used to generate test public keys
keyV sk = skvGen(R);
keyM P = keyMInit(R, N);// = keyM[[None]*N] #stores the public keys;
int ind = 2;
int i = 0;
for (j = 0 ; j < R ; j++) {
for (i = 0 ; i < N ; i++)
{
xm[i][j] = skGen();
P[i][j] = scalarmultBase(xm[i][j]);
}
}
for (j = 0 ; j < R ; j++) {
sk[j] = xm[ind][j];
}
key message = identity();
mgSig IIccss = MLSAG_Gen(message, P, sk, NULL, NULL, ind, R, hw::get_device("default"));
ASSERT_TRUE(MLSAG_Ver(message, P, IIccss, R));
//#MG sig: false one
N = 3;// #cols
R = 3;// #rows
xtmp = skvGen(R);
keyM xx(N, xtmp);// = [[None]*N] #just used to generate test public keys
sk = skvGen(R);
//P (N, xtmp);// = keyM[[None]*N] #stores the public keys;
ind = 2;
for (j = 0 ; j < R ; j++) {
for (i = 0 ; i < N ; i++)
{
xx[i][j] = skGen();
P[i][j] = scalarmultBase(xx[i][j]);
}
sk[j] = xx[ind][j];
}
2018-01-19 00:54:14 -07:00
sk[2] = skGen();//assume we don't know one of the private keys..
IIccss = MLSAG_Gen(message, P, sk, NULL, NULL, ind, R, hw::get_device("default"));
ASSERT_FALSE(MLSAG_Ver(message, P, IIccss, R));
}
TEST(ringct, CLSAG)
{
2020-03-10 16:46:37 -06:00
const size_t N = 11;
const size_t idx = 5;
2020-03-10 16:46:37 -06:00
ctkeyV pubs;
key p, t, t2, u;
const key message = identity();
2020-03-10 16:46:37 -06:00
ctkey backup;
clsag clsag;
2020-03-10 16:46:37 -06:00
for (size_t i = 0; i < N; ++i)
{
2020-03-10 16:46:37 -06:00
key sk;
ctkey tmp;
skpkGen(sk, tmp.dest);
skpkGen(sk, tmp.mask);
pubs.push_back(tmp);
}
2020-03-10 16:46:37 -06:00
// Set P[idx]
skpkGen(p, pubs[idx].dest);
// Set C[idx]
t = skGen();
u = skGen();
addKeys2(pubs[idx].mask,t,u,H);
// Set commitment offset
key Cout;
t2 = skGen();
addKeys2(Cout,t2,u,H);
// Prepare generation inputs
ctkey insk;
insk.dest = p;
insk.mask = t;
// bad message
clsag = rct::proveRctCLSAGSimple(zero(),pubs,insk,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
// bad index at creation
try
{
2020-03-10 16:46:37 -06:00
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,NULL,NULL,NULL,(idx + 1) % N,hw::get_device("default"));
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
}
catch (...) { /* either exception, or failure to verify above */ }
// bad z at creation
try
{
2020-03-10 16:46:37 -06:00
ctkey insk2;
insk2.dest = insk.dest;
insk2.mask = skGen();
clsag = rct::proveRctCLSAGSimple(message,pubs,insk2,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
}
catch (...) { /* either exception, or failure to verify above */ }
// bad C at creation
2020-03-10 16:46:37 -06:00
backup = pubs[idx];
pubs[idx].mask = scalarmultBase(skGen());
try
{
2020-03-10 16:46:37 -06:00
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
}
catch (...) { /* either exception, or failure to verify above */ }
2020-03-10 16:46:37 -06:00
pubs[idx] = backup;
// bad p at creation
try
{
2020-03-10 16:46:37 -06:00
ctkey insk2;
insk2.dest = skGen();
insk2.mask = insk.mask;
clsag = rct::proveRctCLSAGSimple(message,pubs,insk2,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
}
catch (...) { /* either exception, or failure to verify above */ }
// bad P at creation
2020-03-10 16:46:37 -06:00
backup = pubs[idx];
pubs[idx].dest = scalarmultBase(skGen());
try
{
2020-03-10 16:46:37 -06:00
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
}
catch (...) { /* either exception, or failure to verify above */ }
2020-03-10 16:46:37 -06:00
pubs[idx] = backup;
// Test correct signature
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
ASSERT_TRUE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
// empty s
auto sbackup = clsag.s;
clsag.s.clear();
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
clsag.s = sbackup;
// too few s elements
2020-03-10 16:46:37 -06:00
key backup_key;
backup_key = clsag.s.back();
clsag.s.pop_back();
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
clsag.s.push_back(backup_key);
// too many s elements
clsag.s.push_back(skGen());
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
clsag.s.pop_back();
// bad s in clsag at verification
for (auto &s: clsag.s)
{
2020-03-10 16:46:37 -06:00
backup_key = s;
s = skGen();
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
s = backup_key;
}
// bad c1 in clsag at verification
2020-03-10 16:46:37 -06:00
backup_key = clsag.c1;
clsag.c1 = skGen();
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
clsag.c1 = backup_key;
// bad I in clsag at verification
2020-03-10 16:46:37 -06:00
backup_key = clsag.I;
clsag.I = scalarmultBase(skGen());
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
clsag.I = backup_key;
// bad D in clsag at verification
2020-03-10 16:46:37 -06:00
backup_key = clsag.D;
clsag.D = scalarmultBase(skGen());
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
clsag.D = backup_key;
// D not in main subgroup in clsag at verification
2020-03-10 16:46:37 -06:00
backup_key = clsag.D;
rct::key x;
ASSERT_TRUE(epee::string_tools::hex_to_pod("c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa", x));
clsag.D = rct::addKeys(clsag.D, x);
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
clsag.D = backup_key;
// swapped I and D in clsag at verification
std::swap(clsag.I, clsag.D);
2020-03-10 16:46:37 -06:00
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
std::swap(clsag.I, clsag.D);
// check it's still good, in case we failed to restore
2020-03-10 16:46:37 -06:00
ASSERT_TRUE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
}
TEST(ringct, range_proofs)
{
//Ring CT Stuff
//ct range proofs
ctkeyV sc, pc;
ctkey sctmp, pctmp;
std::vector<uint64_t> inamounts;
//add fake input 6000
inamounts.push_back(6000);
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
sc.push_back(sctmp);
pc.push_back(pctmp);
inamounts.push_back(7000);
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
sc.push_back(sctmp);
pc.push_back(pctmp);
vector<xmr_amount >amounts;
rct::keyV amount_keys;
key mask;
//add output 500
amounts.push_back(500);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
keyV destinations;
key Sk, Pk;
skpkGen(Sk, Pk);
destinations.push_back(Pk);
2016-06-12 14:53:01 -06:00
//add output for 12500
amounts.push_back(12500);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
2016-06-12 14:53:01 -06:00
skpkGen(Sk, Pk);
destinations.push_back(Pk);
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
//compute rct data with mixin 3 - should fail since full type with > 1 input
bool ok = false;
try { genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, rct_config, hw::get_device("default")); }
catch(...) { ok = true; }
ASSERT_TRUE(ok);
//compute rct data with mixin 3
rctSig s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 0, 3, rct_config, hw::get_device("default"));
2016-06-12 14:53:01 -06:00
//verify rct data
ASSERT_TRUE(verRctSimple(s));
2016-06-12 14:53:01 -06:00
//decode received amount
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
2016-06-12 14:53:01 -06:00
// Ring CT with failing MG sig part should not verify!
// Since sum of inputs != outputs
amounts[1] = 12501;
skpkGen(Sk, Pk);
destinations[1] = Pk;
//compute rct data with mixin 3
s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 0, 3, rct_config, hw::get_device("default"));
2016-06-12 14:53:01 -06:00
//verify rct data
ASSERT_FALSE(verRctSimple(s));
2016-06-12 14:53:01 -06:00
//decode received amount
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
2016-06-12 14:53:01 -06:00
}
TEST(ringct, range_proofs_with_fee)
{
//Ring CT Stuff
//ct range proofs
ctkeyV sc, pc;
ctkey sctmp, pctmp;
std::vector<uint64_t> inamounts;
//add fake input 6001
inamounts.push_back(6001);
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
2016-06-12 14:53:01 -06:00
sc.push_back(sctmp);
pc.push_back(pctmp);
inamounts.push_back(7000);
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
2016-06-12 14:53:01 -06:00
sc.push_back(sctmp);
pc.push_back(pctmp);
vector<xmr_amount >amounts;
keyV amount_keys;
key mask;
2016-06-12 14:53:01 -06:00
//add output 500
amounts.push_back(500);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
2016-06-12 14:53:01 -06:00
keyV destinations;
key Sk, Pk;
skpkGen(Sk, Pk);
destinations.push_back(Pk);
//add output for 12500
amounts.push_back(12500);
amount_keys.push_back(hash_to_scalar(zero()));
skpkGen(Sk, Pk);
destinations.push_back(Pk);
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
//compute rct data with mixin 3
rctSig s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 1, 3, rct_config, hw::get_device("default"));
//verify rct data
ASSERT_TRUE(verRctSimple(s));
//decode received amount
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
// Ring CT with failing MG sig part should not verify!
// Since sum of inputs != outputs
amounts[1] = 12501;
skpkGen(Sk, Pk);
destinations[1] = Pk;
//compute rct data with mixin 3
s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 500, 3, rct_config, hw::get_device("default"));
//verify rct data
ASSERT_FALSE(verRctSimple(s));
//decode received amount
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
}
2016-07-10 05:57:22 -06:00
TEST(ringct, simple)
{
ctkeyV sc, pc;
ctkey sctmp, pctmp;
//this vector corresponds to output amounts
vector<xmr_amount>outamounts;
//this vector corresponds to input amounts
vector<xmr_amount>inamounts;
//this keyV corresponds to destination pubkeys
keyV destinations;
keyV amount_keys;
key mask;
2016-07-10 05:57:22 -06:00
//add fake input 3000
//the sc is secret data
//pc is public data
tie(sctmp, pctmp) = ctskpkGen(3000);
sc.push_back(sctmp);
pc.push_back(pctmp);
inamounts.push_back(3000);
//add fake input 3000
//the sc is secret data
//pc is public data
tie(sctmp, pctmp) = ctskpkGen(3000);
sc.push_back(sctmp);
pc.push_back(pctmp);
inamounts.push_back(3000);
//add output 5000
outamounts.push_back(5000);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
2016-07-10 05:57:22 -06:00
//add the corresponding destination pubkey
key Sk, Pk;
skpkGen(Sk, Pk);
destinations.push_back(Pk);
//add output 999
outamounts.push_back(999);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
2016-07-10 05:57:22 -06:00
//add the corresponding destination pubkey
skpkGen(Sk, Pk);
destinations.push_back(Pk);
key message = skGen(); //real message later (hash of txn..)
//compute sig with mixin 2
xmr_amount txnfee = 1;
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
rctSig s = genRctSimple(message, sc, pc, destinations,inamounts, outamounts, amount_keys, NULL, NULL, txnfee, 2, rct_config, hw::get_device("default"));
2016-07-10 05:57:22 -06:00
//verify ring ct signature
ASSERT_TRUE(verRctSimple(s));
//decode received amount corresponding to output pubkey index 1
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
2016-07-10 05:57:22 -06:00
}
static rct::rctSig make_sample_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee)
2016-05-27 12:40:18 -06:00
{
ctkeyV sc, pc;
ctkey sctmp, pctmp;
vector<xmr_amount >amounts;
keyV destinations;
keyV amount_keys;
2016-05-27 12:40:18 -06:00
key Sk, Pk;
for (int n = 0; n < n_inputs; ++n) {
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
sc.push_back(sctmp);
pc.push_back(pctmp);
}
for (int n = 0; n < n_outputs; ++n) {
amounts.push_back(output_amounts[n]);
skpkGen(Sk, Pk);
if (n < n_outputs - 1 || !last_is_fee)
{
destinations.push_back(Pk);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
}
2016-05-27 12:40:18 -06:00
}
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
return genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, rct_config, hw::get_device("default"));
}
static rct::rctSig make_sample_simple_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], uint64_t fee)
{
ctkeyV sc, pc;
ctkey sctmp, pctmp;
vector<xmr_amount> inamounts, outamounts;
keyV destinations;
keyV amount_keys;
key Sk, Pk;
for (int n = 0; n < n_inputs; ++n) {
inamounts.push_back(input_amounts[n]);
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
sc.push_back(sctmp);
pc.push_back(pctmp);
}
for (int n = 0; n < n_outputs; ++n) {
outamounts.push_back(output_amounts[n]);
amount_keys.push_back(hash_to_scalar(zero()));
skpkGen(Sk, Pk);
destinations.push_back(Pk);
}
const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
return genRctSimple(rct::zero(), sc, pc, destinations, inamounts, outamounts, amount_keys, NULL, NULL, fee, 3, rct_config, hw::get_device("default"));
}
static bool range_proof_test(bool expected_valid,
int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee, bool simple)
{
2016-05-27 12:40:18 -06:00
//compute rct data
bool valid;
try {
rctSig s;
// simple takes fee as a parameter, non-simple takes it as an extra element to output amounts
if (simple) {
s = make_sample_simple_rct_sig(n_inputs, input_amounts, last_is_fee ? n_outputs - 1 : n_outputs, output_amounts, last_is_fee ? output_amounts[n_outputs - 1] : 0);
valid = verRctSimple(s);
}
else {
s = make_sample_rct_sig(n_inputs, input_amounts, n_outputs, output_amounts, last_is_fee);
valid = verRct(s);
}
2016-05-27 12:40:18 -06:00
}
catch (const std::exception &e) {
valid = false;
}
if (valid == expected_valid) {
return testing::AssertionSuccess();
}
else {
return testing::AssertionFailure();
}
}
#define NELTS(array) (sizeof(array)/sizeof(array[0]))
TEST(ringct, range_proofs_reject_empty_outs)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_empty_outs_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_empty_ins)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_empty_ins_simple)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_all_empty)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_all_empty_simple)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_zero_empty)
2016-05-27 12:40:18 -06:00
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_empty_simple)
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_empty_zero)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_empty_zero_simple)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_zero_zero)
2016-05-27 12:40:18 -06:00
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_zero_simple)
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_zero_out_first)
2016-05-27 12:40:18 -06:00
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {0, 5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_out_first_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {0, 5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_zero_out_last)
2016-05-27 12:40:18 -06:00
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_out_last_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_zero_out_middle)
2016-05-27 12:40:18 -06:00
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {2500, 0, 2500};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_out_middle_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {2500, 0, 2500};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_zero)
2016-05-27 12:40:18 -06:00
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_in_first_simple)
{
const uint64_t inputs[] = {0, 5000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_zero_in_last_simple)
{
const uint64_t inputs[] = {5000, 0};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_zero_in_middle_simple)
{
const uint64_t inputs[] = {2500, 0, 2500};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_single_lower)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_single_lower_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_single_higher)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5001};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_single_higher_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5001};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_single_out_negative)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {(uint64_t)-1000ll};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_single_out_negative_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {(uint64_t)-1000ll};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_out_negative_first)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_out_negative_first_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_out_negative_last)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_out_negative_last_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_out_negative_middle)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_out_negative_middle_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_single_in_negative)
{
const uint64_t inputs[] = {(uint64_t)-1000ll};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_single_in_negative_simple)
{
const uint64_t inputs[] = {(uint64_t)-1000ll};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_in_negative_first)
{
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_in_negative_first_simple)
{
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_in_negative_last)
{
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_in_negative_last_simple)
{
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_in_negative_middle)
{
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_in_negative_middle_simple)
{
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_reject_higher_list)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_higher_list_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_1_to_1)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_1_to_1_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_1_to_N)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_1_to_N_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false,true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_N_to_1_simple)
{
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_N_to_N_simple)
{
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, range_proofs_accept_very_long_simple)
{
const size_t N=12;
2016-05-27 12:40:18 -06:00
uint64_t inputs[N];
uint64_t outputs[N];
for (size_t n = 0; n < N; ++n) {
inputs[n] = n;
outputs[n] = n;
}
std::shuffle(inputs, inputs + N, crypto::random_device{});
std::shuffle(outputs, outputs + N, crypto::random_device{});
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
2016-05-27 12:40:18 -06:00
}
TEST(ringct, HPow2)
{
key G = scalarmultBase(d2h(1));
2019-08-27 14:22:44 -06:00
// Note that H is computed differently than standard hashing
// This method is not guaranteed to return a curvepoint for all inputs
// Don't use it elsewhere
key H = cn_fast_hash(G);
ge_p3 H_p3;
int decode = ge_frombytes_vartime(&H_p3, H.bytes);
ASSERT_EQ(decode, 0); // this is known to pass for the particular value G
ge_p2 H_p2;
ge_p3_to_p2(&H_p2, &H_p3);
ge_p1p1 H8_p1p1;
ge_mul8(&H8_p1p1, &H_p2);
ge_p1p1_to_p3(&H_p3, &H8_p1p1);
ge_p3_tobytes(H.bytes, &H_p3);
for (int j = 0 ; j < ATOMS ; j++) {
ASSERT_TRUE(equalKeys(H, H2[j]));
addKeys(H, H, H);
}
}
static const xmr_amount test_amounts[]={0, 1, 2, 3, 4, 5, 10000, 10000000000000000000ull, 10203040506070809000ull, 123456789123456789};
TEST(ringct, d2h)
{
key k, P1;
skpkGen(k, P1);
for (auto amount: test_amounts) {
d2h(k, amount);
ASSERT_TRUE(amount == h2d(k));
}
}
TEST(ringct, d2b)
{
for (auto amount: test_amounts) {
bits b;
d2b(b, amount);
ASSERT_TRUE(amount == b2d(b));
}
}
TEST(ringct, prooveRange_is_non_deterministic)
{
key C[2], mask[2];
for (int n = 0; n < 2; ++n)
proveRange(C[n], mask[n], 80);
ASSERT_TRUE(memcmp(C[0].bytes, C[1].bytes, sizeof(C[0].bytes)));
ASSERT_TRUE(memcmp(mask[0].bytes, mask[1].bytes, sizeof(mask[0].bytes)));
}
TEST(ringct, fee_0_valid)
{
const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {2000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_0_valid_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {2000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_non_0_valid)
{
const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {1900, 100};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_non_0_valid_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1900, 100};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_non_0_invalid_higher)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1990, 100};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_non_0_invalid_higher_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1990, 100};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_non_0_invalid_lower)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1000, 100};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_non_0_invalid_lower_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1000, 100};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_burn_valid_one_out)
{
const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {0, 2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_burn_valid_one_out_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {0, 2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_burn_valid_zero_out)
{
const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_burn_valid_zero_out_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
static rctSig make_sig()
{
static const uint64_t inputs[] = {2000};
static const uint64_t outputs[] = {1000, 1000};
static rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true);
return sig;
}
#define TEST_rctSig_elements(name, op) \
TEST(ringct, rctSig_##name) \
{ \
rct::rctSig sig = make_sig(); \
ASSERT_TRUE(rct::verRct(sig)); \
op; \
ASSERT_FALSE(rct::verRct(sig)); \
}
TEST_rctSig_elements(rangeSigs_empty, sig.p.rangeSigs.resize(0));
TEST_rctSig_elements(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back()));
TEST_rctSig_elements(rangeSigs_too_few, sig.p.rangeSigs.pop_back());
TEST_rctSig_elements(mgSig_MG_empty, sig.p.MGs.resize(0));
TEST_rctSig_elements(mgSig_ss_empty, sig.p.MGs[0].ss.resize(0));
TEST_rctSig_elements(mgSig_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back()));
TEST_rctSig_elements(mgSig_ss_too_few, sig.p.MGs[0].ss.pop_back());
TEST_rctSig_elements(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0));
TEST_rctSig_elements(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back()));
TEST_rctSig_elements(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back());
TEST_rctSig_elements(mgSig_II_empty, sig.p.MGs[0].II.resize(0));
TEST_rctSig_elements(mgSig_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back()));
TEST_rctSig_elements(mgSig_II_too_few, sig.p.MGs[0].II.pop_back());
TEST_rctSig_elements(mixRing_empty, sig.mixRing.resize(0));
TEST_rctSig_elements(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back()));
TEST_rctSig_elements(mixRing_too_few, sig.mixRing.pop_back());
TEST_rctSig_elements(mixRing0_empty, sig.mixRing[0].resize(0));
TEST_rctSig_elements(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back()));
TEST_rctSig_elements(mixRing0_too_few, sig.mixRing[0].pop_back());
TEST_rctSig_elements(ecdhInfo_empty, sig.ecdhInfo.resize(0));
TEST_rctSig_elements(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back()));
TEST_rctSig_elements(ecdhInfo_too_few, sig.ecdhInfo.pop_back());
TEST_rctSig_elements(outPk_empty, sig.outPk.resize(0));
TEST_rctSig_elements(outPk_too_many, sig.outPk.push_back(sig.outPk.back()));
TEST_rctSig_elements(outPk_too_few, sig.outPk.pop_back());
static rct::rctSig make_sig_simple()
{
static const uint64_t inputs[] = {1000, 1000};
static const uint64_t outputs[] = {1000};
static rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000);
return sig;
}
#define TEST_rctSig_elements_simple(name, op) \
TEST(ringct, rctSig_##name##_simple) \
{ \
rct::rctSig sig = make_sig_simple(); \
ASSERT_TRUE(rct::verRctSimple(sig)); \
op; \
ASSERT_FALSE(rct::verRctSimple(sig)); \
}
TEST_rctSig_elements_simple(rangeSigs_empty, sig.p.rangeSigs.resize(0));
TEST_rctSig_elements_simple(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back()));
TEST_rctSig_elements_simple(rangeSigs_too_few, sig.p.rangeSigs.pop_back());
TEST_rctSig_elements_simple(mgSig_empty, sig.p.MGs.resize(0));
TEST_rctSig_elements_simple(mgSig_too_many, sig.p.MGs.push_back(sig.p.MGs.back()));
TEST_rctSig_elements_simple(mgSig_too_few, sig.p.MGs.pop_back());
TEST_rctSig_elements_simple(mgSig0_ss_empty, sig.p.MGs[0].ss.resize(0));
TEST_rctSig_elements_simple(mgSig0_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back()));
TEST_rctSig_elements_simple(mgSig0_ss_too_few, sig.p.MGs[0].ss.pop_back());
TEST_rctSig_elements_simple(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0));
TEST_rctSig_elements_simple(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back()));
TEST_rctSig_elements_simple(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back());
TEST_rctSig_elements_simple(mgSig0_II_empty, sig.p.MGs[0].II.resize(0));
TEST_rctSig_elements_simple(mgSig0_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back()));
TEST_rctSig_elements_simple(mgSig0_II_too_few, sig.p.MGs[0].II.pop_back());
TEST_rctSig_elements_simple(mixRing_empty, sig.mixRing.resize(0));
TEST_rctSig_elements_simple(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back()));
TEST_rctSig_elements_simple(mixRing_too_few, sig.mixRing.pop_back());
TEST_rctSig_elements_simple(mixRing0_empty, sig.mixRing[0].resize(0));
TEST_rctSig_elements_simple(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back()));
TEST_rctSig_elements_simple(mixRing0_too_few, sig.mixRing[0].pop_back());
TEST_rctSig_elements_simple(pseudoOuts_empty, sig.pseudoOuts.resize(0));
TEST_rctSig_elements_simple(pseudoOuts_too_many, sig.pseudoOuts.push_back(sig.pseudoOuts.back()));
TEST_rctSig_elements_simple(pseudoOuts_too_few, sig.pseudoOuts.pop_back());
TEST_rctSig_elements_simple(ecdhInfo_empty, sig.ecdhInfo.resize(0));
TEST_rctSig_elements_simple(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back()));
TEST_rctSig_elements_simple(ecdhInfo_too_few, sig.ecdhInfo.pop_back());
TEST_rctSig_elements_simple(outPk_empty, sig.outPk.resize(0));
TEST_rctSig_elements_simple(outPk_too_many, sig.outPk.push_back(sig.outPk.back()));
TEST_rctSig_elements_simple(outPk_too_few, sig.outPk.pop_back());
TEST(ringct, reject_gen_simple_ver_non_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1000};
rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000);
ASSERT_FALSE(rct::verRct(sig));
}
TEST(ringct, reject_gen_non_simple_ver_simple)
{
const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {1000, 1000};
rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true);
ASSERT_FALSE(rct::verRctSimple(sig));
}
TEST(ringct, key_ostream)
{
std::stringstream out;
out << "BEGIN" << rct::H << "END";
EXPECT_EQ(
std::string{"BEGIN<8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94>END"},
out.str()
);
}
TEST(ringct, zeroCommmit)
{
static const uint64_t amount = crypto::rand<uint64_t>();
const rct::key z = rct::zeroCommit(amount);
const rct::key a = rct::scalarmultBase(rct::identity());
const rct::key b = rct::scalarmultH(rct::d2h(amount));
const rct::key manual = rct::addKeys(a, b);
ASSERT_EQ(z, manual);
}
static rct::key uncachedZeroCommit(uint64_t amount)
{
const rct::key am = rct::d2h(amount);
const rct::key bH = rct::scalarmultH(am);
return rct::addKeys(rct::G, bH);
}
TEST(ringct, zeroCommitCache)
{
ASSERT_EQ(rct::zeroCommit(0), uncachedZeroCommit(0));
ASSERT_EQ(rct::zeroCommit(1), uncachedZeroCommit(1));
ASSERT_EQ(rct::zeroCommit(2), uncachedZeroCommit(2));
ASSERT_EQ(rct::zeroCommit(10), uncachedZeroCommit(10));
ASSERT_EQ(rct::zeroCommit(200), uncachedZeroCommit(200));
ASSERT_EQ(rct::zeroCommit(1000000000), uncachedZeroCommit(1000000000));
ASSERT_EQ(rct::zeroCommit(3000000000000), uncachedZeroCommit(3000000000000));
ASSERT_EQ(rct::zeroCommit(900000000000000), uncachedZeroCommit(900000000000000));
}
2018-05-24 13:14:09 -06:00
TEST(ringct, H)
{
ge_p3 p3;
ASSERT_EQ(ge_frombytes_vartime(&p3, rct::H.bytes), 0);
ASSERT_EQ(memcmp(&p3, &ge_p3_H, sizeof(ge_p3)), 0);
}
TEST(ringct, mul8)
{
2020-04-14 18:31:30 -06:00
ge_p3 p3;
rct::key key;
ASSERT_EQ(rct::scalarmult8(rct::identity()), rct::identity());
2020-04-14 18:31:30 -06:00
rct::scalarmult8(p3,rct::identity());
ge_p3_tobytes(key.bytes, &p3);
ASSERT_EQ(key, rct::identity());
ASSERT_EQ(rct::scalarmult8(rct::H), rct::scalarmultKey(rct::H, rct::EIGHT));
2020-04-14 18:31:30 -06:00
rct::scalarmult8(p3,rct::H);
ge_p3_tobytes(key.bytes, &p3);
ASSERT_EQ(key, rct::scalarmultKey(rct::H, rct::EIGHT));
ASSERT_EQ(rct::scalarmultKey(rct::scalarmultKey(rct::H, rct::INV_EIGHT), rct::EIGHT), rct::H);
}
TEST(ringct, aggregated)
{
static const size_t N_PROOFS = 16;
std::vector<rctSig> s(N_PROOFS);
std::vector<const rctSig*> sp(N_PROOFS);
for (size_t n = 0; n < N_PROOFS; ++n)
{
static const uint64_t inputs[] = {1000, 1000};
static const uint64_t outputs[] = {500, 1500};
s[n] = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 0);
sp[n] = &s[n];
}
ASSERT_TRUE(verRctSemanticsSimple(sp));
}