#include "net_skeleton.h" /* Copyright (c) 2014 Cesanta Software Limited * All rights reserved * * This software is dual-licensed: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. For the terms of this * license, see . * * You are free to use this software under the terms of the GNU General * Public License, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * Alternatively, you can license this software under a commercial * license, as set out in . * * $Date: 2014-09-28 05:04:41 UTC $ */ #ifndef NS_MALLOC #define NS_MALLOC malloc #endif #ifndef NS_REALLOC #define NS_REALLOC realloc #endif #ifndef NS_FREE #define NS_FREE free #endif #define NS_UDP_RECEIVE_BUFFER_SIZE 2000 #define NS_VPRINTF_BUFFER_SIZE 500 struct ctl_msg { ns_event_handler_t callback; char message[1024 * 8]; }; void iobuf_resize(struct iobuf *io, size_t new_size) { char *p; if ((new_size > io->size || (new_size < io->size && new_size >= io->len)) && (p = (char *) NS_REALLOC(io->buf, new_size)) != NULL) { io->size = new_size; io->buf = p; } } void iobuf_init(struct iobuf *iobuf, size_t initial_size) { iobuf->len = iobuf->size = 0; iobuf->buf = NULL; iobuf_resize(iobuf, initial_size); } void iobuf_free(struct iobuf *iobuf) { if (iobuf != NULL) { NS_FREE(iobuf->buf); iobuf_init(iobuf, 0); } } size_t iobuf_append(struct iobuf *io, const void *buf, size_t len) { char *p = NULL; assert(io != NULL); assert(io->len <= io->size); if (len <= 0) { } else if (io->len + len <= io->size) { memcpy(io->buf + io->len, buf, len); io->len += len; } else if ((p = (char *) NS_REALLOC(io->buf, io->len + len)) != NULL) { io->buf = p; memcpy(io->buf + io->len, buf, len); io->len += len; io->size = io->len; } else { len = 0; } return len; } void iobuf_remove(struct iobuf *io, size_t n) { if (n > 0 && n <= io->len) { memmove(io->buf, io->buf + n, io->len - n); io->len -= n; } } static size_t ns_out(struct ns_connection *nc, const void *buf, size_t len) { if (nc->flags & NSF_UDP) { long n = sendto(nc->sock, buf, len, 0, &nc->sa.sa, sizeof(nc->sa.sin)); DBG(("%p %d send %ld (%d %s)", nc, nc->sock, n, errno, strerror(errno))); return n < 0 ? 0 : n; } else { return iobuf_append(&nc->send_iobuf, buf, len); } } #ifndef NS_DISABLE_THREADS void *ns_start_thread(void *(*f)(void *), void *p) { #ifdef _WIN32 return (void *) _beginthread((void (__cdecl *)(void *)) f, 0, p); #else pthread_t thread_id = (pthread_t) 0; pthread_attr_t attr; (void) pthread_attr_init(&attr); (void) pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); #if defined(NS_STACK_SIZE) && NS_STACK_SIZE > 1 (void) pthread_attr_setstacksize(&attr, NS_STACK_SIZE); #endif pthread_create(&thread_id, &attr, f, p); pthread_attr_destroy(&attr); return (void *) thread_id; #endif } #endif /* NS_DISABLE_THREADS */ static void ns_add_conn(struct ns_mgr *mgr, struct ns_connection *c) { c->next = mgr->active_connections; mgr->active_connections = c; c->prev = NULL; if (c->next != NULL) c->next->prev = c; } static void ns_remove_conn(struct ns_connection *conn) { if (conn->prev == NULL) conn->mgr->active_connections = conn->next; if (conn->prev) conn->prev->next = conn->next; if (conn->next) conn->next->prev = conn->prev; } /* Print message to buffer. If buffer is large enough to hold the message, * return buffer. If buffer is to small, allocate large enough buffer on heap, * and return allocated buffer. */ int ns_avprintf(char **buf, size_t size, const char *fmt, va_list ap) { va_list ap_copy; int len; va_copy(ap_copy, ap); len = vsnprintf(*buf, size, fmt, ap_copy); va_end(ap_copy); if (len < 0) { /* eCos and Windows are not standard-compliant and return -1 when * the buffer is too small. Keep allocating larger buffers until we * succeed or out of memory. */ *buf = NULL; while (len < 0) { NS_FREE(*buf); size *= 2; if ((*buf = (char *) NS_MALLOC(size)) == NULL) break; va_copy(ap_copy, ap); len = vsnprintf(*buf, size, fmt, ap_copy); va_end(ap_copy); } } else if (len > (int) size) { /* Standard-compliant code path. Allocate a buffer that is large enough. */ if ((*buf = (char *) NS_MALLOC(len + 1)) == NULL) { len = -1; } else { va_copy(ap_copy, ap); len = vsnprintf(*buf, len + 1, fmt, ap_copy); va_end(ap_copy); } } return len; } int ns_vprintf(struct ns_connection *nc, const char *fmt, va_list ap) { char mem[NS_VPRINTF_BUFFER_SIZE], *buf = mem; int len; if ((len = ns_avprintf(&buf, sizeof(mem), fmt, ap)) > 0) { ns_out(nc, buf, len); } if (buf != mem && buf != NULL) { NS_FREE(buf); } return len; } int ns_printf(struct ns_connection *conn, const char *fmt, ...) { int len; va_list ap; va_start(ap, fmt); len = ns_vprintf(conn, fmt, ap); va_end(ap); return len; } static void hexdump(struct ns_connection *nc, const char *path, int num_bytes, int ev) { const struct iobuf *io = ev == NS_SEND ? &nc->send_iobuf : &nc->recv_iobuf; FILE *fp; char *buf, src[60], dst[60]; int buf_size = num_bytes * 5 + 100; if ((fp = fopen(path, "a")) != NULL) { ns_sock_to_str(nc->sock, src, sizeof(src), 3); ns_sock_to_str(nc->sock, dst, sizeof(dst), 7); fprintf(fp, "%lu %p %s %s %s %d\n", (unsigned long) time(NULL), nc->user_data, src, ev == NS_RECV ? "<-" : ev == NS_SEND ? "->" : ev == NS_ACCEPT ? "" : "XX", dst, num_bytes); if (num_bytes > 0 && (buf = (char *) NS_MALLOC(buf_size)) != NULL) { ns_hexdump(io->buf + (ev == NS_SEND ? 0 : io->len) - (ev == NS_SEND ? 0 : num_bytes), num_bytes, buf, buf_size); fprintf(fp, "%s", buf); NS_FREE(buf); } fclose(fp); } } static void ns_call(struct ns_connection *nc, int ev, void *ev_data) { if (nc->mgr->hexdump_file != NULL && ev != NS_POLL) { int len = (ev == NS_RECV || ev == NS_SEND) ? * (int *) ev_data : 0; hexdump(nc, nc->mgr->hexdump_file, len, ev); } /* * If protocol handler is specified, call it. Otherwise, call user-specified * event handler. */ (nc->proto_handler ? nc->proto_handler : nc->handler)(nc, ev, ev_data); } static void ns_destroy_conn(struct ns_connection *conn) { closesocket(conn->sock); iobuf_free(&conn->recv_iobuf); iobuf_free(&conn->send_iobuf); #ifdef NS_ENABLE_SSL if (conn->ssl != NULL) { SSL_free(conn->ssl); } if (conn->ssl_ctx != NULL) { SSL_CTX_free(conn->ssl_ctx); } #endif NS_FREE(conn); } static void ns_close_conn(struct ns_connection *conn) { DBG(("%p %d", conn, conn->flags)); ns_call(conn, NS_CLOSE, NULL); ns_remove_conn(conn); ns_destroy_conn(conn); } void ns_set_close_on_exec(sock_t sock) { #ifdef _WIN32 (void) SetHandleInformation((HANDLE) sock, HANDLE_FLAG_INHERIT, 0); #else fcntl(sock, F_SETFD, FD_CLOEXEC); #endif } static void ns_set_non_blocking_mode(sock_t sock) { #ifdef _WIN32 unsigned long on = 1; ioctlsocket(sock, FIONBIO, &on); #else int flags = fcntl(sock, F_GETFL, 0); fcntl(sock, F_SETFL, flags | O_NONBLOCK); #endif } #ifndef NS_DISABLE_SOCKETPAIR int ns_socketpair2(sock_t sp[2], int sock_type) { union socket_address sa; sock_t sock; socklen_t len = sizeof(sa.sin); int ret = 0; sock = sp[0] = sp[1] = INVALID_SOCKET; (void) memset(&sa, 0, sizeof(sa)); sa.sin.sin_family = AF_INET; sa.sin.sin_port = htons(0); sa.sin.sin_addr.s_addr = htonl(0x7f000001); if ((sock = socket(AF_INET, sock_type, 0)) == INVALID_SOCKET) { } else if (bind(sock, &sa.sa, len) != 0) { } else if (sock_type == SOCK_STREAM && listen(sock, 1) != 0) { } else if (getsockname(sock, &sa.sa, &len) != 0) { } else if ((sp[0] = socket(AF_INET, sock_type, 0)) == INVALID_SOCKET) { } else if (connect(sp[0], &sa.sa, len) != 0) { } else if (sock_type == SOCK_DGRAM && (getsockname(sp[0], &sa.sa, &len) != 0 || connect(sock, &sa.sa, len) != 0)) { } else if ((sp[1] = (sock_type == SOCK_DGRAM ? sock : accept(sock, &sa.sa, &len))) == INVALID_SOCKET) { } else { ns_set_close_on_exec(sp[0]); ns_set_close_on_exec(sp[1]); if (sock_type == SOCK_STREAM) closesocket(sock); ret = 1; } if (!ret) { if (sp[0] != INVALID_SOCKET) closesocket(sp[0]); if (sp[1] != INVALID_SOCKET) closesocket(sp[1]); if (sock != INVALID_SOCKET) closesocket(sock); sock = sp[0] = sp[1] = INVALID_SOCKET; } return ret; } int ns_socketpair(sock_t sp[2]) { return ns_socketpair2(sp, SOCK_STREAM); } #endif /* NS_DISABLE_SOCKETPAIR */ /* TODO(lsm): use non-blocking resolver */ static int ns_resolve2(const char *host, struct in_addr *ina) { struct hostent *he; if ((he = gethostbyname(host)) == NULL) { DBG(("gethostbyname(%s) failed: %s", host, strerror(errno))); } else { memcpy(ina, he->h_addr_list[0], sizeof(*ina)); return 1; } return 0; } /* Resolve FDQN "host", store IP address in the "ip". * Return > 0 (IP address length) on success. */ int ns_resolve(const char *host, char *buf, size_t n) { struct in_addr ad; return ns_resolve2(host, &ad) ? snprintf(buf, n, "%s", inet_ntoa(ad)) : 0; } /* Address format: [PROTO://][IP_ADDRESS:]PORT[:CERT][:CA_CERT] */ static int ns_parse_address(const char *str, union socket_address *sa, int *p) { unsigned int a, b, c, d, port = 0; int len = 0; char host[200]; #ifdef NS_ENABLE_IPV6 char buf[100]; #endif /* MacOS needs that. If we do not zero it, subsequent bind() will fail. */ /* Also, all-zeroes in the socket address means binding to all addresses */ /* for both IPv4 and IPv6 (INADDR_ANY and IN6ADDR_ANY_INIT). */ memset(sa, 0, sizeof(*sa)); sa->sin.sin_family = AF_INET; *p = SOCK_STREAM; if (memcmp(str, "udp://", 6) == 0) { str += 6; *p = SOCK_DGRAM; } else if (memcmp(str, "tcp://", 6) == 0) { str += 6; } if (sscanf(str, "%u.%u.%u.%u:%u%n", &a, &b, &c, &d, &port, &len) == 5) { /* Bind to a specific IPv4 address, e.g. 192.168.1.5:8080 */ sa->sin.sin_addr.s_addr = htonl((a << 24) | (b << 16) | (c << 8) | d); sa->sin.sin_port = htons((uint16_t) port); #ifdef NS_ENABLE_IPV6 } else if (sscanf(str, "[%99[^]]]:%u%n", buf, &port, &len) == 2 && inet_pton(AF_INET6, buf, &sa->sin6.sin6_addr)) { /* IPv6 address, e.g. [3ffe:2a00:100:7031::1]:8080 */ sa->sin6.sin6_family = AF_INET6; sa->sin6.sin6_port = htons((uint16_t) port); #endif } else if (sscanf(str, "%199[^ :]:%u%n", host, &port, &len) == 2) { sa->sin.sin_port = htons((uint16_t) port); ns_resolve2(host, &sa->sin.sin_addr); } else if (sscanf(str, "%u%n", &port, &len) == 1) { /* If only port is specified, bind to IPv4, INADDR_ANY */ sa->sin.sin_port = htons((uint16_t) port); } return port < 0xffff && str[len] == '\0' ? len : 0; } /* 'sa' must be an initialized address to bind to */ static sock_t ns_open_listening_socket(union socket_address *sa, int proto) { socklen_t sa_len = (sa->sa.sa_family == AF_INET) ? sizeof(sa->sin) : sizeof(sa->sin6); sock_t sock = INVALID_SOCKET; int on = 1; if ((sock = socket(sa->sa.sa_family, proto, 0)) != INVALID_SOCKET && #if defined(_WIN32) && defined(SO_EXCLUSIVEADDRUSE) /* http://msdn.microsoft.com/en-us/library/windows/desktop/ms740621(v=vs.85).aspx */ !setsockopt(sock, SOL_SOCKET, SO_EXCLUSIVEADDRUSE, (void *) &on, sizeof(on)) && #endif #if 1 || !defined(_WIN32) || defined(SO_EXCLUSIVEADDRUSE) /* * SO_RESUSEADDR is not enabled on Windows because the semantics of * SO_REUSEADDR on UNIX and Windows is different. On Windows, * SO_REUSEADDR allows to bind a socket to a port without error even if * the port is already open by another program. This is not the behavior * SO_REUSEADDR was designed for, and leads to hard-to-track failure * scenarios. Therefore, SO_REUSEADDR was disabled on Windows unless * SO_EXCLUSIVEADDRUSE is supported and set on a socket. */ !setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (void *) &on, sizeof(on)) && #endif !bind(sock, &sa->sa, sa_len) && (proto == SOCK_DGRAM || listen(sock, SOMAXCONN) == 0)) { ns_set_non_blocking_mode(sock); /* In case port was set to 0, get the real port number */ (void) getsockname(sock, &sa->sa, &sa_len); } else if (sock != INVALID_SOCKET) { closesocket(sock); sock = INVALID_SOCKET; } return sock; } #ifdef NS_ENABLE_SSL /* Certificate generation script is at */ /* https://github.com/cesanta/net_skeleton/blob/master/scripts/gen_certs.sh */ static int ns_use_ca_cert(SSL_CTX *ctx, const char *cert) { if (ctx == NULL) { return -1; } else if (cert == NULL || cert[0] == '\0') { return 0; } SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, 0); return SSL_CTX_load_verify_locations(ctx, cert, NULL) == 1 ? 0 : -2; } static int ns_use_cert(SSL_CTX *ctx, const char *pem_file) { if (ctx == NULL) { return -1; } else if (pem_file == NULL || pem_file[0] == '\0') { return 0; } else if (SSL_CTX_use_certificate_file(ctx, pem_file, 1) == 0 || SSL_CTX_use_PrivateKey_file(ctx, pem_file, 1) == 0) { return -2; } else { SSL_CTX_set_mode(ctx, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER); SSL_CTX_use_certificate_chain_file(ctx, pem_file); return 0; } } const char *ns_set_ssl(struct ns_connection *nc, const char *cert, const char *ca_cert) { const char *result = NULL; if ((nc->flags & NSF_LISTENING) && (nc->ssl_ctx = SSL_CTX_new(SSLv23_server_method())) == NULL) { result = "SSL_CTX_new() failed"; } else if (!(nc->flags & NSF_LISTENING) && (nc->ssl_ctx = SSL_CTX_new(SSLv23_client_method())) == NULL) { result = "SSL_CTX_new() failed"; } else if (ns_use_cert(nc->ssl_ctx, cert) != 0) { result = "Invalid ssl cert"; } else if (ns_use_ca_cert(nc->ssl_ctx, ca_cert) != 0) { result = "Invalid CA cert"; } else if (!(nc->flags & NSF_LISTENING) && (nc->ssl = SSL_new(nc->ssl_ctx)) == NULL) { result = "SSL_new() failed"; } else if (!(nc->flags & NSF_LISTENING)) { SSL_set_fd(nc->ssl, nc->sock); } return result; } static int ns_ssl_err(struct ns_connection *conn, int res) { int ssl_err = SSL_get_error(conn->ssl, res); if (ssl_err == SSL_ERROR_WANT_READ) conn->flags |= NSF_WANT_READ; if (ssl_err == SSL_ERROR_WANT_WRITE) conn->flags |= NSF_WANT_WRITE; return ssl_err; } #endif /* NS_ENABLE_SSL */ struct ns_connection *ns_bind(struct ns_mgr *srv, const char *str, ns_event_handler_t callback) { union socket_address sa; struct ns_connection *nc = NULL; int proto; sock_t sock; ns_parse_address(str, &sa, &proto); if ((sock = ns_open_listening_socket(&sa, proto)) == INVALID_SOCKET) { DBG(("Failed to open listener: %d", errno)); } else if ((nc = ns_add_sock(srv, sock, callback)) == NULL) { DBG(("Failed to ns_add_sock")); closesocket(sock); } else { nc->sa = sa; nc->flags |= NSF_LISTENING; nc->handler = callback; if (proto == SOCK_DGRAM) { nc->flags |= NSF_UDP; } DBG(("%p sock %d/%d", nc, sock, proto)); } return nc; } static struct ns_connection *accept_conn(struct ns_connection *ls) { struct ns_connection *c = NULL; union socket_address sa; socklen_t len = sizeof(sa); sock_t sock = INVALID_SOCKET; /* NOTE(lsm): on Windows, sock is always > FD_SETSIZE */ if ((sock = accept(ls->sock, &sa.sa, &len)) == INVALID_SOCKET) { } else if ((c = ns_add_sock(ls->mgr, sock, ls->handler)) == NULL) { closesocket(sock); #ifdef NS_ENABLE_SSL } else if (ls->ssl_ctx != NULL && ((c->ssl = SSL_new(ls->ssl_ctx)) == NULL || SSL_set_fd(c->ssl, sock) != 1)) { DBG(("SSL error")); ns_close_conn(c); c = NULL; #endif } else { c->listener = ls; c->proto_data = ls->proto_data; c->proto_handler = ls->proto_handler; c->user_data = ls->user_data; ns_call(c, NS_ACCEPT, &sa); DBG(("%p %d %p %p", c, c->sock, c->ssl_ctx, c->ssl)); } return c; } static int ns_is_error(int n) { return n == 0 || (n < 0 && errno != EINTR && errno != EINPROGRESS && errno != EAGAIN && errno != EWOULDBLOCK #ifdef _WIN32 && WSAGetLastError() != WSAEINTR && WSAGetLastError() != WSAEWOULDBLOCK #endif ); } void ns_sock_to_str(sock_t sock, char *buf, size_t len, int flags) { union socket_address sa; socklen_t slen = sizeof(sa); if (buf != NULL && len > 0) { buf[0] = '\0'; memset(&sa, 0, sizeof(sa)); if (flags & 4) { getpeername(sock, &sa.sa, &slen); } else { getsockname(sock, &sa.sa, &slen); } if (flags & 1) { #if defined(NS_ENABLE_IPV6) inet_ntop(sa.sa.sa_family, sa.sa.sa_family == AF_INET ? (void *) &sa.sin.sin_addr : (void *) &sa.sin6.sin6_addr, buf, len); #elif defined(_WIN32) /* Only Windoze Vista (and newer) have inet_ntop() */ strncpy(buf, inet_ntoa(sa.sin.sin_addr), len); #else inet_ntop(sa.sa.sa_family, (void *) &sa.sin.sin_addr, buf,(socklen_t)len); #endif } if (flags & 2) { snprintf(buf + strlen(buf), len - (strlen(buf) + 1), "%s%d", flags & 1 ? ":" : "", (int) ntohs(sa.sin.sin_port)); } } } int ns_hexdump(const void *buf, int len, char *dst, int dst_len) { const unsigned char *p = (const unsigned char *) buf; char ascii[17] = ""; int i, idx, n = 0; for (i = 0; i < len; i++) { idx = i % 16; if (idx == 0) { if (i > 0) n += snprintf(dst + n, dst_len - n, " %s\n", ascii); n += snprintf(dst + n, dst_len - n, "%04x ", i); } n += snprintf(dst + n, dst_len - n, " %02x", p[i]); ascii[idx] = p[i] < 0x20 || p[i] > 0x7e ? '.' : p[i]; ascii[idx + 1] = '\0'; } while (i++ % 16) n += snprintf(dst + n, dst_len - n, "%s", " "); n += snprintf(dst + n, dst_len - n, " %s\n\n", ascii); return n; } static void ns_read_from_socket(struct ns_connection *conn) { char buf[2048]; int n = 0; if (conn->flags & NSF_CONNECTING) { int ok = 1, ret; socklen_t len = sizeof(ok); ret = getsockopt(conn->sock, SOL_SOCKET, SO_ERROR, (char *) &ok, &len); #ifdef NS_ENABLE_SSL if (ret == 0 && ok == 0 && conn->ssl != NULL) { int res = SSL_connect(conn->ssl); int ssl_err = ns_ssl_err(conn, res); if (res == 1) { conn->flags |= NSF_SSL_HANDSHAKE_DONE; } else if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) { return; /* Call us again */ } else { ok = 1; } } #endif conn->flags &= ~NSF_CONNECTING; DBG(("%p ok=%d", conn, ok)); if (ok != 0) { conn->flags |= NSF_CLOSE_IMMEDIATELY; } ns_call(conn, NS_CONNECT, &ok); return; } #ifdef NS_ENABLE_SSL if (conn->ssl != NULL) { if (conn->flags & NSF_SSL_HANDSHAKE_DONE) { /* SSL library may have more bytes ready to read then we ask to read. * Therefore, read in a loop until we read everything. Without the loop, * we skip to the next select() cycle which can just timeout. */ while ((n = SSL_read(conn->ssl, buf, sizeof(buf))) > 0) { DBG(("%p %d <- %d bytes (SSL)", conn, conn->flags, n)); iobuf_append(&conn->recv_iobuf, buf, n); ns_call(conn, NS_RECV, &n); } ns_ssl_err(conn, n); } else { int res = SSL_accept(conn->ssl); int ssl_err = ns_ssl_err(conn, res); if (res == 1) { conn->flags |= NSF_SSL_HANDSHAKE_DONE; } else if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) { return; /* Call us again */ } else { conn->flags |= NSF_CLOSE_IMMEDIATELY; } return; } } else #endif { while ((n = (int) recv(conn->sock, buf, sizeof(buf), 0)) > 0) { DBG(("%p %d <- %d bytes (PLAIN)", conn, conn->flags, n)); iobuf_append(&conn->recv_iobuf, buf, n); ns_call(conn, NS_RECV, &n); } } if (ns_is_error(n)) { conn->flags |= NSF_CLOSE_IMMEDIATELY; } } static void ns_write_to_socket(struct ns_connection *conn) { struct iobuf *io = &conn->send_iobuf; int n = 0; #ifdef NS_ENABLE_SSL if (conn->ssl != NULL) { n = SSL_write(conn->ssl, io->buf, io->len); if (n <= 0) { int ssl_err = ns_ssl_err(conn, n); if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) { return; /* Call us again */ } else { conn->flags |= NSF_CLOSE_IMMEDIATELY; } } } else #endif { n = (int) send(conn->sock, io->buf, io->len, 0); } DBG(("%p %d -> %d bytes", conn, conn->flags, n)); ns_call(conn, NS_SEND, &n); if (ns_is_error(n)) { conn->flags |= NSF_CLOSE_IMMEDIATELY; } else if (n > 0) { iobuf_remove(io, n); } } int ns_send(struct ns_connection *conn, const void *buf, int len) { return (int) ns_out(conn, buf, len); } static void ns_handle_udp(struct ns_connection *ls) { struct ns_connection nc; char buf[NS_UDP_RECEIVE_BUFFER_SIZE]; int n; socklen_t s_len = sizeof(nc.sa); memset(&nc, 0, sizeof(nc)); n = recvfrom(ls->sock, buf, sizeof(buf), 0, &nc.sa.sa, &s_len); if (n <= 0) { DBG(("%p recvfrom: %s", ls, strerror(errno))); } else { nc.mgr = ls->mgr; nc.recv_iobuf.buf = buf; nc.recv_iobuf.len = nc.recv_iobuf.size = n; nc.sock = ls->sock; nc.handler = ls->handler; nc.user_data = ls->user_data; nc.proto_data = ls->proto_data; nc.proto_handler = ls->proto_handler; nc.mgr = ls->mgr; nc.listener = ls; nc.flags = NSF_UDP; DBG(("%p %d bytes received", ls, n)); ns_call(&nc, NS_RECV, &n); } } static void ns_add_to_set(sock_t sock, fd_set *set, sock_t *max_fd) { if (sock != INVALID_SOCKET) { FD_SET(sock, set); if (*max_fd == INVALID_SOCKET || sock > *max_fd) { *max_fd = sock; } } } time_t ns_mgr_poll(struct ns_mgr *mgr, int milli) { struct ns_connection *nc, *tmp; struct timeval tv; fd_set read_set, write_set, err_set; sock_t max_fd = INVALID_SOCKET; time_t current_time = time(NULL); FD_ZERO(&read_set); FD_ZERO(&write_set); FD_ZERO(&err_set); ns_add_to_set(mgr->ctl[1], &read_set, &max_fd); for (nc = mgr->active_connections; nc != NULL; nc = tmp) { tmp = nc->next; if (!(nc->flags & (NSF_LISTENING | NSF_CONNECTING))) { ns_call(nc, NS_POLL, ¤t_time); } if (!(nc->flags & NSF_WANT_WRITE)) { /*DBG(("%p read_set", nc)); */ ns_add_to_set(nc->sock, &read_set, &max_fd); } if (((nc->flags & NSF_CONNECTING) && !(nc->flags & NSF_WANT_READ)) || (nc->send_iobuf.len > 0 && !(nc->flags & NSF_CONNECTING) && !(nc->flags & NSF_BUFFER_BUT_DONT_SEND))) { /*DBG(("%p write_set", nc)); */ ns_add_to_set(nc->sock, &write_set, &max_fd); ns_add_to_set(nc->sock, &err_set, &max_fd); } if (nc->flags & NSF_CLOSE_IMMEDIATELY) { ns_close_conn(nc); } } tv.tv_sec = milli / 1000; tv.tv_usec = (milli % 1000) * 1000; if (select((int) max_fd + 1, &read_set, &write_set, &err_set, &tv) > 0) { /* select() might have been waiting for a long time, reset current_time * now to prevent last_io_time being set to the past. */ current_time = time(NULL); /* Read wakeup messages */ if (mgr->ctl[1] != INVALID_SOCKET && FD_ISSET(mgr->ctl[1], &read_set)) { struct ctl_msg ctl_msg; int len = (int) recv(mgr->ctl[1], (char *) &ctl_msg, sizeof(ctl_msg), 0); send(mgr->ctl[1], ctl_msg.message, 1, 0); if (len >= (int) sizeof(ctl_msg.callback) && ctl_msg.callback != NULL) { struct ns_connection *c; for (c = ns_next(mgr, NULL); c != NULL; c = ns_next(mgr, c)) { ctl_msg.callback(c, NS_POLL, ctl_msg.message); } } } for (nc = mgr->active_connections; nc != NULL; nc = tmp) { tmp = nc->next; /* Windows reports failed connect() requests in err_set */ if (FD_ISSET(nc->sock, &err_set) && (nc->flags & NSF_CONNECTING)) { nc->last_io_time = current_time; ns_read_from_socket(nc); } if (FD_ISSET(nc->sock, &read_set)) { nc->last_io_time = current_time; if (nc->flags & NSF_LISTENING) { if (nc->flags & NSF_UDP) { ns_handle_udp(nc); } else { /* We're not looping here, and accepting just one connection at * a time. The reason is that eCos does not respect non-blocking * flag on a listening socket and hangs in a loop. */ accept_conn(nc); } } else { ns_read_from_socket(nc); } } if (FD_ISSET(nc->sock, &write_set)) { nc->last_io_time = current_time; if (nc->flags & NSF_CONNECTING) { ns_read_from_socket(nc); } else if (!(nc->flags & NSF_BUFFER_BUT_DONT_SEND)) { ns_write_to_socket(nc); } } } } for (nc = mgr->active_connections; nc != NULL; nc = tmp) { tmp = nc->next; if ((nc->flags & NSF_CLOSE_IMMEDIATELY) || (nc->send_iobuf.len == 0 && (nc->flags & NSF_FINISHED_SENDING_DATA))) { ns_close_conn(nc); } } return current_time; } struct ns_connection *ns_connect(struct ns_mgr *mgr, const char *address, ns_event_handler_t callback) { sock_t sock = INVALID_SOCKET; struct ns_connection *nc = NULL; union socket_address sa; int rc, proto; ns_parse_address(address, &sa, &proto); if ((sock = socket(AF_INET, proto, 0)) == INVALID_SOCKET) { return NULL; } ns_set_non_blocking_mode(sock); rc = (proto == SOCK_DGRAM) ? 0 : connect(sock, &sa.sa, sizeof(sa.sin)); if (rc != 0 && ns_is_error(rc)) { closesocket(sock); return NULL; } else if ((nc = ns_add_sock(mgr, sock, callback)) == NULL) { closesocket(sock); return NULL; } nc->sa = sa; /* Important, cause UDP conns will use sendto() */ nc->flags = (proto == SOCK_DGRAM) ? NSF_UDP : NSF_CONNECTING; return nc; } struct ns_connection *ns_add_sock(struct ns_mgr *s, sock_t sock, ns_event_handler_t callback) { struct ns_connection *conn; if ((conn = (struct ns_connection *) NS_MALLOC(sizeof(*conn))) != NULL) { memset(conn, 0, sizeof(*conn)); ns_set_non_blocking_mode(sock); ns_set_close_on_exec(sock); conn->sock = sock; conn->handler = callback; conn->mgr = s; conn->last_io_time = time(NULL); ns_add_conn(s, conn); DBG(("%p %d", conn, sock)); } return conn; } struct ns_connection *ns_next(struct ns_mgr *s, struct ns_connection *conn) { return conn == NULL ? s->active_connections : conn->next; } void ns_broadcast(struct ns_mgr *mgr, ns_event_handler_t cb,void *data, size_t len) { struct ctl_msg ctl_msg; if (mgr->ctl[0] != INVALID_SOCKET && data != NULL && len < sizeof(ctl_msg.message)) { ctl_msg.callback = cb; memcpy(ctl_msg.message, data, len); send(mgr->ctl[0], (char *) &ctl_msg, offsetof(struct ctl_msg, message) + len, 0); recv(mgr->ctl[0], (char *) &len, 1, 0); } } void ns_mgr_init(struct ns_mgr *s, void *user_data) { memset(s, 0, sizeof(*s)); s->ctl[0] = s->ctl[1] = INVALID_SOCKET; s->user_data = user_data; #ifdef _WIN32 { WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); } #else /* Ignore SIGPIPE signal, so if client cancels the request, it * won't kill the whole process. */ signal(SIGPIPE, SIG_IGN); #endif #ifndef NS_DISABLE_SOCKETPAIR do { ns_socketpair2(s->ctl, SOCK_DGRAM); } while (s->ctl[0] == INVALID_SOCKET); #endif #ifdef NS_ENABLE_SSL {static int init_done; if (!init_done) { SSL_library_init(); init_done++; }} #endif } void ns_mgr_free(struct ns_mgr *s) { struct ns_connection *conn, *tmp_conn; DBG(("%p", s)); if (s == NULL) return; /* Do one last poll, see https://github.com/cesanta/mongoose/issues/286 */ ns_mgr_poll(s, 0); if (s->ctl[0] != INVALID_SOCKET) closesocket(s->ctl[0]); if (s->ctl[1] != INVALID_SOCKET) closesocket(s->ctl[1]); s->ctl[0] = s->ctl[1] = INVALID_SOCKET; for (conn = s->active_connections; conn != NULL; conn = tmp_conn) { tmp_conn = conn->next; ns_close_conn(conn); } } /* * Copyright (c) 2004-2013 Sergey Lyubka * Copyright (c) 2013 Cesanta Software Limited * All rights reserved * * This library is dual-licensed: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. For the terms of this * license, see . * * You are free to use this library under the terms of the GNU General * Public License, but WITHOUT ANY WARRANTY; without even the implied * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * Alternatively, you can license this library under a commercial * license, as set out in . */ #define _CRT_SECURE_NO_WARNINGS /* Disable deprecation warning in VS2005+ */ #include #include #include #include #ifdef _WIN32 #define snprintf _snprintf #endif #ifndef FROZEN_REALLOC #define FROZEN_REALLOC realloc #endif #ifndef FROZEN_FREE #define FROZEN_FREE free #endif struct frozen { const char *end; const char *cur; struct json_token *tokens; int max_tokens; int num_tokens; int do_realloc; }; static int parse_object(struct frozen *f); static int parse_value(struct frozen *f); #define EXPECT(cond, err_code) do { if (!(cond)) return (err_code); } while (0) #define TRY(expr) do { int _n = expr; if (_n < 0) return _n; } while (0) #define END_OF_STRING (-1) static int left(const struct frozen *f) { return f->end - f->cur; } static int is_space(int ch) { return ch == ' ' || ch == '\t' || ch == '\r' || ch == '\n'; } static void skip_whitespaces(struct frozen *f) { while (f->cur < f->end && is_space(*f->cur)) f->cur++; } static int cur(struct frozen *f) { skip_whitespaces(f); return f->cur >= f->end ? END_OF_STRING : * (unsigned char *) f->cur; } static int test_and_skip(struct frozen *f, int expected) { int ch = cur(f); if (ch == expected) { f->cur++; return 0; } return ch == END_OF_STRING ? JSON_STRING_INCOMPLETE : JSON_STRING_INVALID; } static int is_alpha(int ch) { return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z'); } static int is_digit(int ch) { return ch >= '0' && ch <= '9'; } static int is_hex_digit(int ch) { return is_digit(ch) || (ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F'); } static int get_escape_len(const char *s, int len) { switch (*s) { case 'u': return len < 6 ? JSON_STRING_INCOMPLETE : is_hex_digit(s[1]) && is_hex_digit(s[2]) && is_hex_digit(s[3]) && is_hex_digit(s[4]) ? 5 : JSON_STRING_INVALID; case '"': case '\\': case '/': case 'b': case 'f': case 'n': case 'r': case 't': return len < 2 ? JSON_STRING_INCOMPLETE : 1; default: return JSON_STRING_INVALID; } } static int capture_ptr(struct frozen *f, const char *ptr, enum json_type type) { if (f->do_realloc && f->num_tokens >= f->max_tokens) { int new_size = f->max_tokens == 0 ? 100 : f->max_tokens * 2; void *p = FROZEN_REALLOC(f->tokens, new_size * sizeof(f->tokens[0])); if (p == NULL) return JSON_TOKEN_ARRAY_TOO_SMALL; f->max_tokens = new_size; f->tokens = (struct json_token *) p; } if (f->tokens == NULL || f->max_tokens == 0) return 0; if (f->num_tokens >= f->max_tokens) return JSON_TOKEN_ARRAY_TOO_SMALL; f->tokens[f->num_tokens].ptr = ptr; f->tokens[f->num_tokens].type = type; f->num_tokens++; return 0; } static int capture_len(struct frozen *f, int token_index, const char *ptr) { if (f->tokens == 0 || f->max_tokens == 0) return 0; EXPECT(token_index >= 0 && token_index < f->max_tokens, JSON_STRING_INVALID); f->tokens[token_index].len = ptr - f->tokens[token_index].ptr; f->tokens[token_index].num_desc = (f->num_tokens - 1) - token_index; return 0; } /* identifier = letter { letter | digit | '_' } */ static int parse_identifier(struct frozen *f) { EXPECT(is_alpha(cur(f)), JSON_STRING_INVALID); TRY(capture_ptr(f, f->cur, JSON_TYPE_STRING)); while (f->cur < f->end && (*f->cur == '_' || is_alpha(*f->cur) || is_digit(*f->cur))) { f->cur++; } capture_len(f, f->num_tokens - 1, f->cur); return 0; } static int get_utf8_char_len(unsigned char ch) { if ((ch & 0x80) == 0) return 1; switch (ch & 0xf0) { case 0xf0: return 4; case 0xe0: return 3; default: return 2; } } /* string = '"' { quoted_printable_chars } '"' */ static int parse_string(struct frozen *f) { int n, ch = 0, len = 0; TRY(test_and_skip(f, '"')); TRY(capture_ptr(f, f->cur, JSON_TYPE_STRING)); for (; f->cur < f->end; f->cur += len) { ch = * (unsigned char *) f->cur; len = get_utf8_char_len((unsigned char) ch); EXPECT(ch >= 32 && len > 0, JSON_STRING_INVALID); /* No control chars */ EXPECT(len < left(f), JSON_STRING_INCOMPLETE); if (ch == '\\') { EXPECT((n = get_escape_len(f->cur + 1, left(f))) > 0, n); len += n; } else if (ch == '"') { capture_len(f, f->num_tokens - 1, f->cur); f->cur++; break; }; } return ch == '"' ? 0 : JSON_STRING_INCOMPLETE; } /* number = [ '-' ] digit+ [ '.' digit+ ] [ ['e'|'E'] ['+'|'-'] digit+ ] */ static int parse_number(struct frozen *f) { int ch = cur(f); TRY(capture_ptr(f, f->cur, JSON_TYPE_NUMBER)); if (ch == '-') f->cur++; EXPECT(f->cur < f->end, JSON_STRING_INCOMPLETE); EXPECT(is_digit(f->cur[0]), JSON_STRING_INVALID); while (f->cur < f->end && is_digit(f->cur[0])) f->cur++; if (f->cur < f->end && f->cur[0] == '.') { f->cur++; EXPECT(f->cur < f->end, JSON_STRING_INCOMPLETE); EXPECT(is_digit(f->cur[0]), JSON_STRING_INVALID); while (f->cur < f->end && is_digit(f->cur[0])) f->cur++; } if (f->cur < f->end && (f->cur[0] == 'e' || f->cur[0] == 'E')) { f->cur++; EXPECT(f->cur < f->end, JSON_STRING_INCOMPLETE); if ((f->cur[0] == '+' || f->cur[0] == '-')) f->cur++; EXPECT(f->cur < f->end, JSON_STRING_INCOMPLETE); EXPECT(is_digit(f->cur[0]), JSON_STRING_INVALID); while (f->cur < f->end && is_digit(f->cur[0])) f->cur++; } capture_len(f, f->num_tokens - 1, f->cur); return 0; } /* array = '[' [ value { ',' value } ] ']' */ static int parse_array(struct frozen *f) { int ind; TRY(test_and_skip(f, '[')); TRY(capture_ptr(f, f->cur - 1, JSON_TYPE_ARRAY)); ind = f->num_tokens - 1; while (cur(f) != ']') { TRY(parse_value(f)); if (cur(f) == ',') f->cur++; } TRY(test_and_skip(f, ']')); capture_len(f, ind, f->cur); return 0; } static int compare(const char *s, const char *str, int len) { int i = 0; while (i < len && s[i] == str[i]) i++; return i == len ? 1 : 0; } static int expect(struct frozen *f, const char *s, int len, enum json_type t) { int i, n = left(f); TRY(capture_ptr(f, f->cur, t)); for (i = 0; i < len; i++) { if (i >= n) return JSON_STRING_INCOMPLETE; if (f->cur[i] != s[i]) return JSON_STRING_INVALID; } f->cur += len; TRY(capture_len(f, f->num_tokens - 1, f->cur)); return 0; } /* value = 'null' | 'true' | 'false' | number | string | array | object */ static int parse_value(struct frozen *f) { int ch = cur(f); switch (ch) { case '"': TRY(parse_string(f)); break; case '{': TRY(parse_object(f)); break; case '[': TRY(parse_array(f)); break; case 'n': TRY(expect(f, "null", 4, JSON_TYPE_NULL)); break; case 't': TRY(expect(f, "true", 4, JSON_TYPE_TRUE)); break; case 'f': TRY(expect(f, "false", 5, JSON_TYPE_FALSE)); break; case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': TRY(parse_number(f)); break; default: return ch == END_OF_STRING ? JSON_STRING_INCOMPLETE : JSON_STRING_INVALID; } return 0; } /* key = identifier | string */ static int parse_key(struct frozen *f) { int ch = cur(f); #if 0 printf("%s 1 [%.*s]\n", __func__, (int) (f->end - f->cur), f->cur); #endif if (is_alpha(ch)) { TRY(parse_identifier(f)); } else if (ch == '"') { TRY(parse_string(f)); } else { return ch == END_OF_STRING ? JSON_STRING_INCOMPLETE : JSON_STRING_INVALID; } return 0; } /* pair = key ':' value */ static int parse_pair(struct frozen *f) { TRY(parse_key(f)); TRY(test_and_skip(f, ':')); TRY(parse_value(f)); return 0; } /* object = '{' pair { ',' pair } '}' */ static int parse_object(struct frozen *f) { int ind; TRY(test_and_skip(f, '{')); TRY(capture_ptr(f, f->cur - 1, JSON_TYPE_OBJECT)); ind = f->num_tokens - 1; while (cur(f) != '}') { TRY(parse_pair(f)); if (cur(f) == ',') f->cur++; } TRY(test_and_skip(f, '}')); capture_len(f, ind, f->cur); return 0; } static int doit(struct frozen *f) { if (f->cur == 0 || f->end < f->cur) return JSON_STRING_INVALID; if (f->end == f->cur) return JSON_STRING_INCOMPLETE; TRY(parse_object(f)); TRY(capture_ptr(f, f->cur, JSON_TYPE_EOF)); capture_len(f, f->num_tokens, f->cur); return 0; } /* json = object */ int parse_json(const char *s, int s_len, struct json_token *arr, int arr_len) { struct frozen frozen; memset(&frozen, 0, sizeof(frozen)); frozen.end = s + s_len; frozen.cur = s; frozen.tokens = arr; frozen.max_tokens = arr_len; TRY(doit(&frozen)); return frozen.cur - s; } struct json_token *parse_json2(const char *s, int s_len) { struct frozen frozen; memset(&frozen, 0, sizeof(frozen)); frozen.end = s + s_len; frozen.cur = s; frozen.do_realloc = 1; if (doit(&frozen) < 0) { FROZEN_FREE((void *) frozen.tokens); frozen.tokens = NULL; } return frozen.tokens; } static int path_part_len(const char *p) { int i = 0; while (p[i] != '\0' && p[i] != '[' && p[i] != '.') i++; return i; } struct json_token *find_json_token(struct json_token *toks, const char *path) { while (path != 0 && path[0] != '\0') { int i, ind2 = 0, ind = -1, skip = 2, n = path_part_len(path); if (path[0] == '[') { if (toks->type != JSON_TYPE_ARRAY || !is_digit(path[1])) return 0; for (ind = 0, n = 1; path[n] != ']' && path[n] != '\0'; n++) { if (!is_digit(path[n])) return 0; ind *= 10; ind += path[n] - '0'; } if (path[n++] != ']') return 0; skip = 1; /* In objects, we skip 2 elems while iterating, in arrays 1. */ } else if (toks->type != JSON_TYPE_OBJECT) return 0; toks++; for (i = 0; i < toks[-1].num_desc; i += skip, ind2++) { /* ind == -1 indicated that we're iterating an array, not object */ if (ind == -1 && toks[i].type != JSON_TYPE_STRING) return 0; if (ind2 == ind || (ind == -1 && toks[i].len == n && compare(path, toks[i].ptr, n))) { i += skip - 1; break; }; if (toks[i - 1 + skip].type == JSON_TYPE_ARRAY || toks[i - 1 + skip].type == JSON_TYPE_OBJECT) { i += toks[i - 1 + skip].num_desc; } } if (i == toks[-1].num_desc) return 0; path += n; if (path[0] == '.') path++; if (path[0] == '\0') return &toks[i]; toks += i; } return 0; } int json_emit_long(char *buf, int buf_len, long int value) { char tmp[20]; int n = snprintf(tmp, sizeof(tmp), "%ld", value); strncpy(buf, tmp, buf_len > 0 ? buf_len : 0); return n; } int json_emit_double(char *buf, int buf_len, double value) { char tmp[20]; int n = snprintf(tmp, sizeof(tmp), "%g", value); strncpy(buf, tmp, buf_len > 0 ? buf_len : 0); return n; } int json_emit_quoted_str(char *s, int s_len, const char *str, int len) { const char *begin = s, *end = s + s_len, *str_end = str + len; char ch; #define EMIT(x) do { if (s < end) *s = x; s++; } while (0) EMIT('"'); while (str < str_end) { ch = *str++; switch (ch) { case '"': EMIT('\\'); EMIT('"'); break; case '\\': EMIT('\\'); EMIT('\\'); break; case '\b': EMIT('\\'); EMIT('b'); break; case '\f': EMIT('\\'); EMIT('f'); break; case '\n': EMIT('\\'); EMIT('n'); break; case '\r': EMIT('\\'); EMIT('r'); break; case '\t': EMIT('\\'); EMIT('t'); break; default: EMIT(ch); } } EMIT('"'); if (s < end) { *s = '\0'; } return s - begin; } int json_emit_unquoted_str(char *buf, int buf_len, const char *str, int len) { if (buf_len > 0 && len > 0) { int n = len < buf_len ? len : buf_len; memcpy(buf, str, n); if (n < buf_len) { buf[n] = '\0'; } } return len; } int json_emit_va(char *s, int s_len, const char *fmt, va_list ap) { const char *end = s + s_len, *str, *orig = s; size_t len; while (*fmt != '\0') { switch (*fmt) { case '[': case ']': case '{': case '}': case ',': case ':': case ' ': case '\r': case '\n': case '\t': if (s < end) { *s = *fmt; } s++; break; case 'i': s += json_emit_long(s, end - s, va_arg(ap, long)); break; case 'f': s += json_emit_double(s, end - s, va_arg(ap, double)); break; case 'v': str = va_arg(ap, char *); len = va_arg(ap, size_t); s += json_emit_quoted_str(s, end - s, str, len); break; case 'V': str = va_arg(ap, char *); len = va_arg(ap, size_t); s += json_emit_unquoted_str(s, end - s, str, len); break; case 's': str = va_arg(ap, char *); s += json_emit_quoted_str(s, end - s, str, strlen(str)); break; case 'S': str = va_arg(ap, char *); s += json_emit_unquoted_str(s, end - s, str, strlen(str)); break; case 'T': s += json_emit_unquoted_str(s, end - s, "true", 4); break; case 'F': s += json_emit_unquoted_str(s, end - s, "false", 5); break; case 'N': s += json_emit_unquoted_str(s, end - s, "null", 4); break; default: return 0; } fmt++; } /* Best-effort to 0-terminate generated string */ if (s < end) { *s = '\0'; } return s - orig; } int json_emit(char *buf, int buf_len, const char *fmt, ...) { int len; va_list ap; va_start(ap, fmt); len = json_emit_va(buf, buf_len, fmt, ap); va_end(ap); return len; } /* * Copyright (c) 2014 Cesanta Software Limited * All rights reserved */ #ifndef NS_DISABLE_HTTP_WEBSOCKET /* * Check whether full request is buffered. Return: * -1 if request is malformed * 0 if request is not yet fully buffered * >0 actual request length, including last \r\n\r\n */ static int get_request_len(const char *s, int buf_len) { const unsigned char *buf = (unsigned char *) s; int i; for (i = 0; i < buf_len; i++) { if (!isprint(buf[i]) && buf[i] != '\r' && buf[i] != '\n' && buf[i] < 128) { return -1; } else if (buf[i] == '\n' && i + 1 < buf_len && buf[i + 1] == '\n') { return i + 2; } else if (buf[i] == '\n' && i + 2 < buf_len && buf[i + 1] == '\r' && buf[i + 2] == '\n') { return i + 3; } } return 0; } int ns_parse_http(const char *s, int n, struct http_message *req) { const char *end; int len, i; if ((len = get_request_len(s, n)) <= 0) return len; memset(req, 0, sizeof(*req)); req->message.p = s; req->body.p = s + len; req->message.len = req->body.len = (size_t) ~0; end = s + len; /* Request is fully buffered. Skip leading whitespaces. */ while (s < end && isspace(* (unsigned char *) s)) s++; /* Parse request line: method, URI, proto */ s = ns_skip(s, end, " ", &req->method); s = ns_skip(s, end, " ", &req->uri); s = ns_skip(s, end, "\r\n", &req->proto); if (req->uri.p <= req->method.p || req->proto.p <= req->uri.p) return -1; for (i = 0; i < (int) ARRAY_SIZE(req->header_names); i++) { struct ns_str *k = &req->header_names[i], *v = &req->header_values[i]; s = ns_skip(s, end, ": ", k); s = ns_skip(s, end, "\r\n", v); while (v->len > 0 && v->p[v->len - 1] == ' ') { v->len--; /* Trim trailing spaces in header value */ } if (k->len == 0 || v->len == 0) { k->p = v->p = NULL; break; } if (!ns_ncasecmp(k->p, "Content-Length", 14)) { req->body.len = to64(v->p); req->message.len = len + req->body.len; } } if (req->body.len == (size_t) ~0 && ns_vcasecmp(&req->method, "GET") == 0) { req->body.len = 0; req->message.len = len; } return len; } struct ns_str *ns_get_http_header(struct http_message *hm, const char *name) { size_t i, len = strlen(name); for (i = 0; i < ARRAY_SIZE(hm->header_names); i++) { struct ns_str *h = &hm->header_names[i], *v = &hm->header_values[i]; if (h->p != NULL && h->len == len && !ns_ncasecmp(h->p, name, len)) return v; } return NULL; } static int is_ws_fragment(unsigned char flags) { return (flags & 0x80) == 0 || (flags & 0x0f) == 0; } static int is_ws_first_fragment(unsigned char flags) { return (flags & 0x80) == 0 && (flags & 0x0f) != 0; } static int deliver_websocket_data(struct ns_connection *nc) { /* Using unsigned char *, cause of integer arithmetic below */ uint64_t i, data_len = 0, frame_len = 0, buf_len = nc->recv_iobuf.len, len, mask_len = 0, header_len = 0; unsigned char *p = (unsigned char *) nc->recv_iobuf.buf, *buf = p, *e = p + buf_len; unsigned *sizep = (unsigned *) &p[1]; /* Size ptr for defragmented frames */ int ok, reass = buf_len > 0 && is_ws_fragment(p[0]) && !(nc->flags & NSF_WEBSOCKET_NO_DEFRAG); /* If that's a continuation frame that must be reassembled, handle it */ if (reass && !is_ws_first_fragment(p[0]) && buf_len >= 1 + sizeof(*sizep) && buf_len >= 1 + sizeof(*sizep) + *sizep) { buf += 1 + sizeof(*sizep) + *sizep; buf_len -= 1 + sizeof(*sizep) + *sizep; } if (buf_len >= 2) { len = buf[1] & 127; mask_len = buf[1] & 128 ? 4 : 0; if (len < 126 && buf_len >= mask_len) { data_len = len; header_len = 2 + mask_len; } else if (len == 126 && buf_len >= 4 + mask_len) { header_len = 4 + mask_len; data_len = ntohs(* (uint16_t *) &buf[2]); } else if (buf_len >= 10 + mask_len) { header_len = 10 + mask_len; data_len = (((uint64_t) ntohl(* (uint32_t *) &buf[2])) << 32) + ntohl(* (uint32_t *) &buf[6]); } } frame_len = header_len + data_len; ok = frame_len > 0 && frame_len <= buf_len; if (ok) { struct websocket_message wsm; wsm.size = (size_t) data_len; wsm.data = buf + header_len; wsm.flags = buf[0]; /* Apply mask if necessary */ if (mask_len > 0) { for (i = 0; i < data_len; i++) { buf[i + header_len] ^= (buf + header_len - mask_len)[i % 4]; } } if (reass) { /* On first fragmented frame, nullify size */ if (is_ws_first_fragment(wsm.flags)) { iobuf_resize(&nc->recv_iobuf, nc->recv_iobuf.size + sizeof(*sizep)); p[0] &= ~0x0f; /* Next frames will be treated as continuation */ buf = p + 1 + sizeof(*sizep); *sizep = 0; /* TODO(lsm): fix. this can stomp over frame data */ } /* Append this frame to the reassembled buffer */ memmove(buf, wsm.data, e - wsm.data); (*sizep) += wsm.size; nc->recv_iobuf.len -= wsm.data - buf; /* On last fragmented frame - call user handler and remove data */ if (wsm.flags & 0x80) { wsm.data = p + 1 + sizeof(*sizep); wsm.size = *sizep; nc->handler(nc, NS_WEBSOCKET_FRAME, &wsm); iobuf_remove(&nc->recv_iobuf, 1 + sizeof(*sizep) + *sizep); } } else { /* TODO(lsm): properly handle OOB control frames during defragmentation */ nc->handler(nc, NS_WEBSOCKET_FRAME, &wsm); /* Call handler */ iobuf_remove(&nc->recv_iobuf, (size_t) frame_len); /* Cleanup frame */ } } return ok; } static void ns_send_ws_header(struct ns_connection *nc, int op, size_t len) { int header_len; unsigned char header[10]; header[0] = 0x80 + (op & 0x0f); if (len < 126) { header[1] = len; header_len = 2; } else if (len < 65535) { header[1] = 126; * (uint16_t *) &header[2] = htons((uint16_t) len); header_len = 4; } else { header[1] = 127; * (uint32_t *) &header[2] = htonl((uint32_t) ((uint64_t) len >> 32)); * (uint32_t *) &header[6] = htonl((uint32_t) (len & 0xffffffff)); header_len = 10; } ns_send(nc, header, header_len); } void ns_send_websocket_frame(struct ns_connection *nc, int op, const void *data, size_t len) { ns_send_ws_header(nc, op, len); ns_send(nc, data, len); if (op == WEBSOCKET_OP_CLOSE) { nc->flags |= NSF_FINISHED_SENDING_DATA; } } void ns_send_websocket_framev(struct ns_connection *nc, int op, const struct ns_str *strv, int strvcnt) { int i; int len = 0; for (i=0; iflags |= NSF_FINISHED_SENDING_DATA; } } void ns_printf_websocket_frame(struct ns_connection *nc, int op, const char *fmt, ...) { char mem[4192], *buf = mem; va_list ap; int len; va_start(ap, fmt); if ((len = ns_avprintf(&buf, sizeof(mem), fmt, ap)) > 0) { ns_send_websocket_frame(nc, op, buf, len); } va_end(ap); if (buf != mem && buf != NULL) { free(buf); } } static void websocket_handler(struct ns_connection *nc, int ev, void *ev_data) { nc->handler(nc, ev, ev_data); switch (ev) { case NS_RECV: do { } while (deliver_websocket_data(nc)); break; default: break; } } static void ws_handshake(struct ns_connection *nc, const struct ns_str *key) { static const char *magic = "258EAFA5-E914-47DA-95CA-C5AB0DC85B11"; char buf[500], sha[20], b64_sha[sizeof(sha) * 2]; SHA1_CTX sha_ctx; snprintf(buf, sizeof(buf), "%.*s%s", (int) key->len, key->p, magic); SHA1Init(&sha_ctx); SHA1Update(&sha_ctx, (unsigned char *) buf, strlen(buf)); SHA1Final((unsigned char *) sha, &sha_ctx); ns_base64_encode((unsigned char *) sha, sizeof(sha), b64_sha); ns_printf(nc, "%s%s%s", "HTTP/1.1 101 Switching Protocols\r\n" "Upgrade: websocket\r\n" "Connection: Upgrade\r\n" "Sec-WebSocket-Accept: ", b64_sha, "\r\n\r\n"); } static void http_handler(struct ns_connection *nc, int ev, void *ev_data) { struct iobuf *io = &nc->recv_iobuf; struct http_message hm; struct ns_str *vec; int req_len; /* * For HTTP messages without Content-Length, always send HTTP message * before NS_CLOSE message. */ if (ev == NS_CLOSE && io->len > 0 && ns_parse_http(io->buf, io->len, &hm) > 0) { hm.body.len = io->buf + io->len - hm.body.p; nc->handler(nc, nc->listener ? NS_HTTP_REQUEST : NS_HTTP_REPLY, &hm); } nc->handler(nc, ev, ev_data); if (ev == NS_RECV) { req_len = ns_parse_http(io->buf, io->len, &hm); if (req_len < 0 || (req_len == 0 && io->len >= NS_MAX_HTTP_REQUEST_SIZE)) { nc->flags |= NSF_CLOSE_IMMEDIATELY; } else if (req_len == 0) { /* Do nothing, request is not yet fully buffered */ } else if (nc->listener == NULL && ns_get_http_header(&hm, "Sec-WebSocket-Accept")) { /* We're websocket client, got handshake response from server. */ /* TODO(lsm): check the validity of accept Sec-WebSocket-Accept */ iobuf_remove(io, req_len); nc->proto_handler = websocket_handler; nc->flags |= NSF_IS_WEBSOCKET; nc->handler(nc, NS_WEBSOCKET_HANDSHAKE_DONE, NULL); websocket_handler(nc, NS_RECV, ev_data); } else if (nc->listener != NULL && (vec = ns_get_http_header(&hm, "Sec-WebSocket-Key")) != NULL) { /* This is a websocket request. Switch protocol handlers. */ iobuf_remove(io, req_len); nc->proto_handler = websocket_handler; nc->flags |= NSF_IS_WEBSOCKET; /* Send handshake */ nc->handler(nc, NS_WEBSOCKET_HANDSHAKE_REQUEST, &hm); if (!(nc->flags & NSF_CLOSE_IMMEDIATELY)) { if (nc->send_iobuf.len == 0) { ws_handshake(nc, vec); } nc->handler(nc, NS_WEBSOCKET_HANDSHAKE_DONE, NULL); websocket_handler(nc, NS_RECV, ev_data); } } else if (hm.message.len <= io->len) { /* Whole HTTP message is fully buffered, call event handler */ nc->handler(nc, nc->listener ? NS_HTTP_REQUEST : NS_HTTP_REPLY, &hm); iobuf_remove(io, hm.message.len); } } } void ns_set_protocol_http_websocket(struct ns_connection *nc) { nc->proto_handler = http_handler; } void ns_send_websocket_handshake(struct ns_connection *nc, const char *uri, const char *extra_headers) { unsigned long random = (unsigned long) uri; char key[sizeof(random) * 2]; ns_base64_encode((unsigned char *) &random, sizeof(random), key); ns_printf(nc, "GET %s HTTP/1.1\r\n" "Upgrade: websocket\r\n" "Connection: Upgrade\r\n" "Sec-WebSocket-Version: 13\r\n" "Sec-WebSocket-Key: %s\r\n" "%s\r\n", uri, key, extra_headers == NULL ? "" : extra_headers); } void ns_send_http_file(struct ns_connection *nc, const char *path, ns_stat_t *st) { char buf[BUFSIZ]; size_t n; FILE *fp; if ((fp = fopen(path, "rb")) != NULL) { ns_printf(nc, "HTTP/1.1 200 OK\r\n" "Content-Length: %lu\r\n\r\n", (unsigned long) st->st_size); while ((n = fread(buf, 1, sizeof(buf), fp)) > 0) { ns_send(nc, buf, n); } fclose(fp); } else { ns_printf(nc, "%s", "HTTP/1.1 500 Server Error\r\n" "Content-Length: 0\r\n\r\n"); } } static void remove_double_dots(char *s) { char *p = s; while (*s != '\0') { *p++ = *s++; if (s[-1] == '/' || s[-1] == '\\') { while (s[0] != '\0') { if (s[0] == '/' || s[0] == '\\') { s++; } else if (s[0] == '.' && s[1] == '.') { s += 2; } else { break; } } } } *p = '\0'; } int ns_url_decode(const char *src, int src_len, char *dst, int dst_len, int is_form_url_encoded) { int i, j, a, b; #define HEXTOI(x) (isdigit(x) ? x - '0' : x - 'W') for (i = j = 0; i < src_len && j < dst_len - 1; i++, j++) { if (src[i] == '%' && i < src_len - 2 && isxdigit(* (const unsigned char *) (src + i + 1)) && isxdigit(* (const unsigned char *) (src + i + 2))) { a = tolower(* (const unsigned char *) (src + i + 1)); b = tolower(* (const unsigned char *) (src + i + 2)); dst[j] = (char) ((HEXTOI(a) << 4) | HEXTOI(b)); i += 2; } else if (is_form_url_encoded && src[i] == '+') { dst[j] = ' '; } else { dst[j] = src[i]; } } dst[j] = '\0'; /* Null-terminate the destination */ return i >= src_len ? j : -1; } int ns_get_http_var(const struct ns_str *buf, const char *name, char *dst, size_t dst_len) { const char *p, *e, *s; size_t name_len; int len; if (dst == NULL || dst_len == 0) { len = -2; } else if (buf->p == NULL || name == NULL || buf->len == 0) { len = -1; dst[0] = '\0'; } else { name_len = strlen(name); e = buf->p + buf->len; len = -1; dst[0] = '\0'; for (p = buf->p; p + name_len < e; p++) { if ((p == buf->p || p[-1] == '&') && p[name_len] == '=' && !ns_ncasecmp(name, p, name_len)) { p += name_len + 1; s = (const char *) memchr(p, '&', (size_t)(e - p)); if (s == NULL) { s = e; } len = ns_url_decode(p, (size_t)(s - p), dst, dst_len, 1); if (len == -1) { len = -2; } break; } } } return len; } void ns_serve_http(struct ns_connection *nc, struct http_message *hm, struct ns_serve_http_opts opts) { char path[NS_MAX_PATH]; ns_stat_t st; snprintf(path, sizeof(path), "%s/%.*s", opts.document_root, (int) hm->uri.len, hm->uri.p); remove_double_dots(path); if (ns_stat(path, &st) != 0) { ns_printf(nc, "%s", "HTTP/1.1 404 Not Found\r\nContent-Length: 0\r\n\r\n"); } else if (S_ISDIR(st.st_mode)) { strncat(path, "/index.html", sizeof(path) - (strlen(path) + 1)); if (ns_stat(path, &st) == 0) { ns_send_http_file(nc, path, &st); } else { ns_printf(nc, "%s", "HTTP/1.1 403 Access Denied\r\n" "Content-Length: 0\r\n\r\n"); } } else { ns_send_http_file(nc, path, &st); } } #endif /* NS_DISABLE_HTTP_WEBSOCKET */ /* Copyright(c) By Steve Reid */ /* 100% Public Domain */ #ifndef NS_DISABLE_SHA1 #include static int is_big_endian(void) { static const int n = 1; return ((char *) &n)[0] == 0; } #define SHA1HANDSOFF #if defined(__sun) #endif union char64long16 { unsigned char c[64]; uint32_t l[16]; }; #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits)))) static uint32_t blk0(union char64long16 *block, int i) { /* Forrest: SHA expect BIG_ENDIAN, swap if LITTLE_ENDIAN */ if (!is_big_endian()) { block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | (rol(block->l[i], 8) & 0x00FF00FF); } return block->l[i]; } /* Avoid redefine warning (ARM /usr/include/sys/ucontext.h define R0~R4) */ #undef blk #undef R0 #undef R1 #undef R2 #undef R3 #undef R4 #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \ ^block->l[(i+2)&15]^block->l[i&15],1)) #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(block, i)+0x5A827999+rol(v,5);w=rol(w,30); #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30); #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30); #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30); #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30); void SHA1Transform(uint32_t state[5], const unsigned char buffer[64]) { uint32_t a, b, c, d, e; union char64long16 block[1]; memcpy(block, buffer, 64); a = state[0]; b = state[1]; c = state[2]; d = state[3]; e = state[4]; R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3); R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7); R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11); R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15); R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; /* Erase working structures. The order of operations is important, * used to ensure that compiler doesn't optimize those out. */ memset(block, 0, sizeof(block)); a = b = c = d = e = 0; (void) a; (void) b; (void) c; (void) d; (void) e; } void SHA1Init(SHA1_CTX *context) { context->state[0] = 0x67452301; context->state[1] = 0xEFCDAB89; context->state[2] = 0x98BADCFE; context->state[3] = 0x10325476; context->state[4] = 0xC3D2E1F0; context->count[0] = context->count[1] = 0; } void SHA1Update(SHA1_CTX *context, const unsigned char *data, uint32_t len) { uint32_t i, j; j = context->count[0]; if ((context->count[0] += len << 3) < j) context->count[1]++; context->count[1] += (len>>29); j = (j >> 3) & 63; if ((j + len) > 63) { memcpy(&context->buffer[j], data, (i = 64-j)); SHA1Transform(context->state, context->buffer); for ( ; i + 63 < len; i += 64) { SHA1Transform(context->state, &data[i]); } j = 0; } else i = 0; memcpy(&context->buffer[j], &data[i], len - i); } void SHA1Final(unsigned char digest[20], SHA1_CTX *context) { unsigned i; unsigned char finalcount[8], c; for (i = 0; i < 8; i++) { finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)] >> ((3-(i & 3)) * 8) ) & 255); } c = 0200; SHA1Update(context, &c, 1); while ((context->count[0] & 504) != 448) { c = 0000; SHA1Update(context, &c, 1); } SHA1Update(context, finalcount, 8); for (i = 0; i < 20; i++) { digest[i] = (unsigned char) ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); } memset(context, '\0', sizeof(*context)); memset(&finalcount, '\0', sizeof(finalcount)); } #endif /* NS_DISABLE_SHA1 */ /* * Copyright (c) 2014 Cesanta Software Limited * All rights reserved */ const char *ns_skip(const char *s, const char *end, const char *delims, struct ns_str *v) { v->p = s; while (s < end && strchr(delims, * (unsigned char *) s) == NULL) s++; v->len = s - v->p; while (s < end && strchr(delims, * (unsigned char *) s) != NULL) s++; return s; } static int lowercase(const char *s) { return tolower(* (const unsigned char *) s); } int ns_ncasecmp(const char *s1, const char *s2, size_t len) { int diff = 0; if (len > 0) do { diff = lowercase(s1++) - lowercase(s2++); } while (diff == 0 && s1[-1] != '\0' && --len > 0); return diff; } int ns_vcasecmp(const struct ns_str *str2, const char *str1) { size_t n1 = strlen(str1), n2 = str2->len; return n1 == n2 ? ns_ncasecmp(str1, str2->p, n1) : n1 > n2 ? 1 : -1; } int ns_vcmp(const struct ns_str *str2, const char *str1) { size_t n1 = strlen(str1), n2 = str2->len; return n1 == n2 ? memcmp(str1, str2->p, n2) : n1 > n2 ? 1 : -1; } #ifdef _WIN32 static void to_wchar(const char *path, wchar_t *wbuf, size_t wbuf_len) { char buf[MAX_PATH_SIZE * 2], buf2[MAX_PATH_SIZE * 2], *p; strncpy(buf, path, sizeof(buf)); buf[sizeof(buf) - 1] = '\0'; /* Trim trailing slashes. Leave backslash for paths like "X:\" */ p = buf + strlen(buf) - 1; while (p > buf && p[-1] != ':' && (p[0] == '\\' || p[0] == '/')) *p-- = '\0'; /* * Convert to Unicode and back. If doubly-converted string does not * match the original, something is fishy, reject. */ memset(wbuf, 0, wbuf_len * sizeof(wchar_t)); MultiByteToWideChar(CP_UTF8, 0, buf, -1, wbuf, (int) wbuf_len); WideCharToMultiByte(CP_UTF8, 0, wbuf, (int) wbuf_len, buf2, sizeof(buf2), NULL, NULL); if (strcmp(buf, buf2) != 0) { wbuf[0] = L'\0'; } } #endif /* _WIN32 */ int ns_stat(const char *path, ns_stat_t *st) { #ifdef _WIN32 wchar_t wpath[MAX_PATH_SIZE]; to_wchar(path, wpath, ARRAY_SIZE(wpath)); DBG(("[%ls] -> %d", wpath, _wstati64(wpath, st))); return _wstati64(wpath, st); #else return stat(path, st); #endif } FILE *ns_fopen(const char *path, const char *mode) { #ifdef _WIN32 wchar_t wpath[MAX_PATH_SIZE], wmode[10]; to_wchar(path, wpath, ARRAY_SIZE(wpath)); to_wchar(mode, wmode, ARRAY_SIZE(wmode)); return _wfopen(wpath, wmode); #else return fopen(path, mode); #endif } int ns_open(const char *path, int flag, int mode) { #ifdef _WIN32 wchar_t wpath[MAX_PATH_SIZE]; to_wchar(path, wpath, ARRAY_SIZE(wpath)); return _wopen(wpath, flag, mode); #else return open(path, flag, mode); #endif } void ns_base64_encode(const unsigned char *src, int src_len, char *dst) { static const char *b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; int i, j, a, b, c; for (i = j = 0; i < src_len; i += 3) { a = src[i]; b = i + 1 >= src_len ? 0 : src[i + 1]; c = i + 2 >= src_len ? 0 : src[i + 2]; dst[j++] = b64[a >> 2]; dst[j++] = b64[((a & 3) << 4) | (b >> 4)]; if (i + 1 < src_len) { dst[j++] = b64[(b & 15) << 2 | (c >> 6)]; } if (i + 2 < src_len) { dst[j++] = b64[c & 63]; } } while (j % 4 != 0) { dst[j++] = '='; } dst[j++] = '\0'; } /* Convert one byte of encoded base64 input stream to 6-bit chunk */ static unsigned char from_b64(unsigned char ch) { /* Inverse lookup map */ static const unsigned char tab[128] = { 255, 255, 255, 255, 255, 255, 255, 255, /* 0 */ 255, 255, 255, 255, 255, 255, 255, 255, /* 8 */ 255, 255, 255, 255, 255, 255, 255, 255, /* 16 */ 255, 255, 255, 255, 255, 255, 255, 255, /* 24 */ 255, 255, 255, 255, 255, 255, 255, 255, /* 32 */ 255, 255, 255, 62, 255, 255, 255, 63, /* 40 */ 52, 53, 54, 55, 56, 57, 58, 59, /* 48 */ 60, 61, 255, 255, 255, 200, 255, 255, /* 56 '=' is 200, on index 61 */ 255, 0, 1, 2, 3, 4, 5, 6, /* 64 */ 7, 8, 9, 10, 11, 12, 13, 14, /* 72 */ 15, 16, 17, 18, 19, 20, 21, 22, /* 80 */ 23, 24, 25, 255, 255, 255, 255, 255, /* 88 */ 255, 26, 27, 28, 29, 30, 31, 32, /* 96 */ 33, 34, 35, 36, 37, 38, 39, 40, /* 104 */ 41, 42, 43, 44, 45, 46, 47, 48, /* 112 */ 49, 50, 51, 255, 255, 255, 255, 255, /* 120 */ }; return tab[ch & 127]; } void ns_base64_decode(const unsigned char *s, int len, char *dst) { unsigned char a, b, c, d; while (len >= 4 && (a = from_b64(s[0])) != 255 && (b = from_b64(s[1])) != 255 && (c = from_b64(s[2])) != 255 && (d = from_b64(s[3])) != 255) { if (a == 200 || b == 200) break; /* '=' can't be there */ *dst++ = a << 2 | b >> 4; if (c == 200) break; *dst++ = b << 4 | c >> 2; if (d == 200) break; *dst++ = c << 6 | d; s += 4; len -=4; } *dst = 0; } /* Copyright (c) 2014 Cesanta Software Limited */ /* All rights reserved */ #ifndef NS_DISABLE_JSON_RPC int ns_rpc_create_reply(char *buf, int len, const struct ns_rpc_request *req, const char *result_fmt, ...) { va_list ap; int n = 0; n += json_emit(buf + n, len - n, "{s:s,s:V,s:", "jsonrpc", "2.0", "id", req->id == NULL ? "null" : req->id->ptr, req->id == NULL ? 4 : req->id->len, "result"); va_start(ap, result_fmt); n += json_emit_va(buf + n, len - n, result_fmt, ap); va_end(ap); n += json_emit(buf + n, len - n, "}"); return n; } int ns_rpc_create_request(char *buf, int len, const char *method, const char *id, const char *params_fmt, ...) { va_list ap; int n = 0; n += json_emit(buf + n, len - n, "{s:s,s:s,s:s,s:", "jsonrpc", "2.0", "id", id, "method", method, "params"); va_start(ap, params_fmt); n += json_emit_va(buf + n, len - n, params_fmt, ap); va_end(ap); n += json_emit(buf + n, len - n, "}"); return n; } int ns_rpc_create_error(char *buf, int len, struct ns_rpc_request *req, int code, const char *message, const char *fmt, ...) { va_list ap; int n = 0; n += json_emit(buf + n, len - n, "{s:s,s:V,s:{s:i,s:s,s:", "jsonrpc", "2.0", "id", req->id == NULL ? "null" : req->id->ptr, req->id == NULL ? 4 : req->id->len, "error", "code", code, "message", message, "data"); va_start(ap, fmt); n += json_emit_va(buf + n, len - n, fmt, ap); va_end(ap); n += json_emit(buf + n, len - n, "}}"); return n; } int ns_rpc_create_std_error(char *buf, int len, struct ns_rpc_request *req, int code) { const char *message = NULL; switch (code) { case JSON_RPC_PARSE_ERROR: message = "parse error"; break; case JSON_RPC_INVALID_REQUEST_ERROR: message = "invalid request"; break; case JSON_RPC_METHOD_NOT_FOUND_ERROR: message = "method not found"; break; case JSON_RPC_INVALID_PARAMS_ERROR: message = "invalid parameters"; break; case JSON_RPC_SERVER_ERROR: message = "server error"; break; default: message = "unspecified error"; break; } return ns_rpc_create_error(buf, len, req, code, message, "N"); } int ns_rpc_dispatch(const char *buf, int len, char *dst, int dst_len, const char **methods, ns_rpc_handler_t *handlers) { struct json_token tokens[200]; struct ns_rpc_request req; int i, n; memset(&req, 0, sizeof(req)); n = parse_json(buf, len, tokens, sizeof(tokens) / sizeof(tokens[0])); if (n <= 0) { int err_code = (n == JSON_STRING_INVALID) ? JSON_RPC_PARSE_ERROR : JSON_RPC_SERVER_ERROR; return ns_rpc_create_std_error(dst, dst_len, &req, err_code); } req.message = tokens; req.id = find_json_token(tokens, "id"); req.method = find_json_token(tokens, "method"); req.params = find_json_token(tokens, "params"); if (req.id == NULL || req.method == NULL) { return ns_rpc_create_std_error(dst, dst_len, &req, JSON_RPC_INVALID_REQUEST_ERROR); } for (i = 0; methods[i] != NULL; i++) { int mlen = strlen(methods[i]); if (mlen == req.method->len && memcmp(methods[i], req.method->ptr, mlen) == 0) break; } if (methods[i] == NULL) { return ns_rpc_create_std_error(dst, dst_len, &req, JSON_RPC_METHOD_NOT_FOUND_ERROR); } return handlers[i](dst, dst_len, &req); } int ns_rpc_parse_reply(const char *buf, int len, struct json_token *toks, int max_toks, struct ns_rpc_reply *rep, struct ns_rpc_error *er) { int n = parse_json(buf, len, toks, max_toks); memset(rep, 0, sizeof(*rep)); memset(er, 0, sizeof(*er)); if (n > 0) { if ((rep->result = find_json_token(toks, "result")) != NULL) { rep->message = toks; rep->id = find_json_token(toks, "id"); } else { er->message = toks; er->id = find_json_token(toks, "id"); er->error_code = find_json_token(toks, "error.code"); er->error_message = find_json_token(toks, "error.message"); er->error_data = find_json_token(toks, "error.data"); } } return n; } #endif /* NS_DISABLE_JSON_RPC */