// Copyright (c) 2017-2018, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include "gtest/gtest.h" #include "string_tools.h" #include "ringct/rctOps.h" #include "ringct/rctSigs.h" #include "ringct/bulletproofs.h" #include "device/device.hpp" #include "misc_log_ex.h" TEST(bulletproofs, valid_zero) { rct::Bulletproof proof = bulletproof_PROVE(0, rct::skGen()); ASSERT_TRUE(rct::bulletproof_VERIFY(proof)); } TEST(bulletproofs, valid_max) { rct::Bulletproof proof = bulletproof_PROVE(0xffffffffffffffff, rct::skGen()); ASSERT_TRUE(rct::bulletproof_VERIFY(proof)); } TEST(bulletproofs, valid_random) { for (int n = 0; n < 8; ++n) { rct::Bulletproof proof = bulletproof_PROVE(crypto::rand(), rct::skGen()); ASSERT_TRUE(rct::bulletproof_VERIFY(proof)); } } TEST(bulletproofs, valid_multi_random) { for (int n = 0; n < 8; ++n) { size_t outputs = 2 + n; std::vector amounts; rct::keyV gamma; for (size_t i = 0; i < outputs; ++i) { amounts.push_back(crypto::rand()); gamma.push_back(rct::skGen()); } rct::Bulletproof proof = bulletproof_PROVE(amounts, gamma); ASSERT_TRUE(rct::bulletproof_VERIFY(proof)); } } TEST(bulletproofs, multi_splitting) { rct::ctkeyV sc, pc; rct::ctkey sctmp, pctmp; std::vector index; std::vector inamounts, outamounts; std::tie(sctmp, pctmp) = rct::ctskpkGen(6000); sc.push_back(sctmp); pc.push_back(pctmp); inamounts.push_back(6000); index.push_back(1); std::tie(sctmp, pctmp) = rct::ctskpkGen(7000); sc.push_back(sctmp); pc.push_back(pctmp); inamounts.push_back(7000); index.push_back(1); const int mixin = 3, max_outputs = 16; for (int n_outputs = 1; n_outputs <= max_outputs; ++n_outputs) { std::vector outamounts; rct::keyV amount_keys; rct::keyV destinations; rct::key Sk, Pk; uint64_t available = 6000 + 7000; uint64_t amount; rct::ctkeyM mixRing(sc.size()); //add output for (size_t i = 0; i < n_outputs; ++i) { amount = rct::randXmrAmount(available); outamounts.push_back(amount); amount_keys.push_back(rct::hash_to_scalar(rct::zero())); rct::skpkGen(Sk, Pk); destinations.push_back(Pk); available -= amount; } for (size_t i = 0; i < sc.size(); ++i) { for (size_t j = 0; j <= mixin; ++j) { if (j == 1) mixRing[i].push_back(pc[i]); else mixRing[i].push_back({rct::scalarmultBase(rct::skGen()), rct::scalarmultBase(rct::skGen())}); } } rct::ctkeyV outSk; rct::rctSig s = rct::genRctSimple(rct::zero(), sc, destinations, inamounts, outamounts, available, mixRing, amount_keys, NULL, NULL, index, outSk, rct::RangeProofMultiOutputBulletproof, hw::get_device("default")); ASSERT_TRUE(rct::verRctSimple(s)); for (size_t i = 0; i < n_outputs; ++i) { rct::key mask; rct::decodeRctSimple(s, amount_keys[i], i, mask, hw::get_device("default")); ASSERT_TRUE(mask == outSk[i].mask); } } } TEST(bulletproofs, valid_aggregated) { static const size_t N_PROOFS = 8; std::vector proofs(N_PROOFS); for (size_t n = 0; n < N_PROOFS; ++n) { size_t outputs = 2 + n; std::vector amounts; rct::keyV gamma; for (size_t i = 0; i < outputs; ++i) { amounts.push_back(crypto::rand()); gamma.push_back(rct::skGen()); } proofs[n] = bulletproof_PROVE(amounts, gamma); } ASSERT_TRUE(rct::bulletproof_VERIFY(proofs)); } TEST(bulletproofs, invalid_8) { rct::key invalid_amount = rct::zero(); invalid_amount[8] = 1; rct::Bulletproof proof = bulletproof_PROVE(invalid_amount, rct::skGen()); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); } TEST(bulletproofs, invalid_31) { rct::key invalid_amount = rct::zero(); invalid_amount[31] = 1; rct::Bulletproof proof = bulletproof_PROVE(invalid_amount, rct::skGen()); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); } TEST(bulletproofs, invalid_gamma_0) { rct::key invalid_amount = rct::zero(); invalid_amount[8] = 1; rct::key gamma = rct::zero(); rct::Bulletproof proof = bulletproof_PROVE(invalid_amount, gamma); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); } static const char * const torsion_elements[] = { "c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa", "0000000000000000000000000000000000000000000000000000000000000000", "26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc85", "ecffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff7f", "26e8958fc2b227b045c3f489f2ef98f0d5dfac05d3c63339b13802886d53fc05", "0000000000000000000000000000000000000000000000000000000000000080", "c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac037a", }; TEST(bulletproofs, invalid_torsion) { rct::Bulletproof proof = bulletproof_PROVE(7329838943733, rct::skGen()); ASSERT_TRUE(rct::bulletproof_VERIFY(proof)); for (const auto &xs: torsion_elements) { rct::key x; ASSERT_TRUE(epee::string_tools::hex_to_pod(xs, x)); ASSERT_FALSE(rct::isInMainSubgroup(x)); for (auto &k: proof.V) { const rct::key org_k = k; rct::addKeys(k, org_k, x); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); k = org_k; } for (auto &k: proof.L) { const rct::key org_k = k; rct::addKeys(k, org_k, x); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); k = org_k; } for (auto &k: proof.R) { const rct::key org_k = k; rct::addKeys(k, org_k, x); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); k = org_k; } const rct::key org_A = proof.A; rct::addKeys(proof.A, org_A, x); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); proof.A = org_A; const rct::key org_S = proof.S; rct::addKeys(proof.S, org_S, x); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); proof.S = org_S; const rct::key org_T1 = proof.T1; rct::addKeys(proof.T1, org_T1, x); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); proof.T1 = org_T1; const rct::key org_T2 = proof.T2; rct::addKeys(proof.T2, org_T2, x); ASSERT_FALSE(rct::bulletproof_VERIFY(proof)); proof.T2 = org_T2; } }