// Copyright (c) 2014-2024, The Monero Project // // All rights reserved. // // Redistribution and use in source and binary forms, with or without modification, are // permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, this list of // conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, this list // of conditions and the following disclaimer in the documentation and/or other // materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors may be // used to endorse or promote products derived from this software without specific // prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL // THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF // THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // // Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers #include "ringct/rctSigs.h" #include "ringct/bulletproofs.h" #include "chaingen.h" #include "rct2.h" #include "device/device.hpp" using namespace epee; using namespace crypto; using namespace cryptonote; //---------------------------------------------------------------------------------------------------------------------- // Tests bool gen_rct2_tx_validation_base::generate_with(std::vector& events, size_t mixin, size_t n_txes, const uint64_t *amounts_paid, bool valid, const rct::RCTConfig *rct_config, uint8_t hf_version, const std::function &sources, std::vector &destinations, size_t tx_idx)> &pre_tx, const std::function &post_tx) const { uint64_t ts_start = 1338224400; GENERATE_ACCOUNT(miner_account); MAKE_GENESIS_BLOCK(events, blk_0, miner_account, ts_start); // create 12 miner accounts, and have them mine the next 12 blocks cryptonote::account_base miner_accounts[12]; const cryptonote::block *prev_block = &blk_0; cryptonote::block blocks[12 + CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW]; for (size_t n = 0; n < 12; ++n) { miner_accounts[n].generate(); CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[n], *prev_block, miner_accounts[n], test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version, 2, 2, prev_block->timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long crypto::hash(), 0, transaction(), std::vector(), 0, 0, 2), false, "Failed to generate block"); events.push_back(blocks[n]); prev_block = blocks + n; LOG_PRINT_L0("Initial miner tx " << n << ": " << obj_to_json_str(blocks[n].miner_tx)); } // rewind cryptonote::block blk_r, blk_last; { blk_last = blocks[11]; for (size_t i = 0; i < CRYPTONOTE_MINED_MONEY_UNLOCK_WINDOW; ++i) { CHECK_AND_ASSERT_MES(generator.construct_block_manually(blocks[12+i], blk_last, miner_account, test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_hf_version, 2, 2, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long crypto::hash(), 0, transaction(), std::vector(), 0, 0, 2), false, "Failed to generate block"); events.push_back(blocks[12+i]); blk_last = blocks[12+i]; } blk_r = blk_last; } // create 4 txes from these miners in another block, to generate some rct outputs std::vector rct_txes; cryptonote::block blk_txes; std::vector starting_rct_tx_hashes; static const uint64_t input_amounts_available[] = {5000000000000, 30000000000000, 100000000000, 80000000000}; for (size_t n = 0; n < n_txes; ++n) { std::vector sources; sources.resize(1); tx_source_entry& src = sources.back(); const uint64_t needed_amount = input_amounts_available[n]; src.amount = input_amounts_available[n]; size_t real_index_in_tx = 0; for (size_t m = 0; m <= mixin; ++m) { size_t index_in_tx = 0; for (size_t i = 0; i < blocks[m].miner_tx.vout.size(); ++i) if (blocks[m].miner_tx.vout[i].amount == needed_amount) index_in_tx = i; CHECK_AND_ASSERT_MES(blocks[m].miner_tx.vout[index_in_tx].amount == needed_amount, false, "Expected amount not found"); src.push_output(m, boost::get(blocks[m].miner_tx.vout[index_in_tx].target).key, src.amount); if (m == n) real_index_in_tx = index_in_tx; } src.real_out_tx_key = cryptonote::get_tx_pub_key_from_extra(blocks[n].miner_tx); src.real_output = n; src.real_output_in_tx_index = real_index_in_tx; src.mask = rct::identity(); src.rct = false; //fill outputs entry tx_destination_entry td; td.addr = miner_accounts[n].get_keys().m_account_address; std::vector destinations; for (int o = 0; amounts_paid[o] != (uint64_t)-1; ++o) { td.amount = amounts_paid[o]; destinations.push_back(td); } if (pre_tx && !pre_tx(sources, destinations, n)) { MDEBUG("pre_tx returned failure"); return false; } crypto::secret_key tx_key; std::vector additional_tx_keys; std::unordered_map subaddresses; subaddresses[miner_accounts[n].get_keys().m_account_address.m_spend_public_key] = {0,0}; rct_txes.resize(rct_txes.size() + 1); bool r = construct_tx_and_get_tx_key(miner_accounts[n].get_keys(), subaddresses, sources, destinations, cryptonote::account_public_address{}, std::vector(), rct_txes.back(), tx_key, additional_tx_keys, true, rct_config[n]); CHECK_AND_ASSERT_MES(r, false, "failed to construct transaction"); if (post_tx && !post_tx(rct_txes.back(), n)) { MDEBUG("post_tx returned failure"); return false; } //events.push_back(rct_txes.back()); starting_rct_tx_hashes.push_back(get_transaction_hash(rct_txes.back())); LOG_PRINT_L0("Test tx: " << obj_to_json_str(rct_txes.back())); for (int o = 0; amounts_paid[o] != (uint64_t)-1; ++o) { crypto::key_derivation derivation; bool r = crypto::generate_key_derivation(destinations[o].addr.m_view_public_key, tx_key, derivation); CHECK_AND_ASSERT_MES(r, false, "Failed to generate key derivation"); crypto::secret_key amount_key; crypto::derivation_to_scalar(derivation, o, amount_key); rct::key rct_tx_mask; const uint8_t type = rct_txes.back().rct_signatures.type; if (rct::is_rct_simple(type)) rct::decodeRctSimple(rct_txes.back().rct_signatures, rct::sk2rct(amount_key), o, rct_tx_mask, hw::get_device("default")); else rct::decodeRct(rct_txes.back().rct_signatures, rct::sk2rct(amount_key), o, rct_tx_mask, hw::get_device("default")); } while (amounts_paid[0] != (size_t)-1) ++amounts_paid; ++amounts_paid; } if (!valid) DO_CALLBACK(events, "mark_invalid_tx"); events.push_back(rct_txes); CHECK_AND_ASSERT_MES(generator.construct_block_manually(blk_txes, blk_last, miner_account, test_generator::bf_major_ver | test_generator::bf_minor_ver | test_generator::bf_timestamp | test_generator::bf_tx_hashes | test_generator::bf_hf_version | test_generator::bf_max_outs, hf_version, hf_version, blk_last.timestamp + DIFFICULTY_BLOCKS_ESTIMATE_TIMESPAN * 2, // v2 has blocks twice as long crypto::hash(), 0, transaction(), starting_rct_tx_hashes, 0, 6, hf_version), false, "Failed to generate block"); if (!valid) DO_CALLBACK(events, "mark_invalid_block"); events.push_back(blk_txes); blk_last = blk_txes; return true; } bool gen_rct2_tx_validation_base::check_bp(const cryptonote::transaction &tx, size_t tx_idx, const size_t *sizes, const char *context) const { DEFINE_TESTS_ERROR_CONTEXT(context); CHECK_TEST_CONDITION(tx.version >= 2); CHECK_TEST_CONDITION(rct::is_rct_bulletproof(tx.rct_signatures.type)); size_t n_sizes = 0, n_amounts = 0; for (size_t n = 0; n < tx_idx; ++n) { while (sizes[0] != (size_t)-1) ++sizes; ++sizes; } while (sizes[n_sizes] != (size_t)-1) n_amounts += sizes[n_sizes++]; CHECK_TEST_CONDITION(tx.rct_signatures.p.bulletproofs.size() == n_sizes); CHECK_TEST_CONDITION(rct::n_bulletproof_max_amounts(tx.rct_signatures.p.bulletproofs) == n_amounts); for (size_t n = 0; n < n_sizes; ++n) CHECK_TEST_CONDITION(rct::n_bulletproof_max_amounts(tx.rct_signatures.p.bulletproofs[n]) == sizes[n]); return true; } bool gen_rct2_tx_clsag_malleability::generate(std::vector& events) const { DEFINE_TESTS_ERROR_CONTEXT("gen_rct_tx_clsag_malleability"); const int mixin = 10; const uint64_t amounts_paid[] = {5000, 5000, (uint64_t)-1}; const rct::RCTConfig rct_config[] = { { rct::RangeProofPaddedBulletproof, 3 } }; return generate_with(events, mixin, 1, amounts_paid, false, rct_config, HF_VERSION_CLSAG + 1, NULL, [&](cryptonote::transaction &tx, size_t tx_idx) { CHECK_TEST_CONDITION(tx.version == 2); CHECK_TEST_CONDITION(tx.rct_signatures.type == rct::RCTTypeCLSAG); CHECK_TEST_CONDITION(!tx.rct_signatures.p.CLSAGs.empty()); rct::key x; CHECK_TEST_CONDITION(epee::string_tools::hex_to_pod("c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa", x)); tx.rct_signatures.p.CLSAGs[0].D = rct::addKeys(tx.rct_signatures.p.CLSAGs[0].D, x); return true; }); }