monero/tests/unit_tests/crypto.cpp

315 lines
16 KiB
C++

// Copyright (c) 2017-2022, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <cstdint>
#include <gtest/gtest.h>
#include <memory>
#include <sstream>
#include <string>
#include "cryptonote_basic/cryptonote_basic_impl.h"
#include "cryptonote_basic/merge_mining.h"
namespace
{
static constexpr const std::uint8_t source[] = {
0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea, 0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea,
0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9, 0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94,
0x6c, 0x72, 0x51, 0xd5, 0x41, 0x54, 0xcf, 0xa9, 0x2c, 0x17, 0x3a, 0x0d, 0xd3, 0x9c, 0x1f, 0x94,
0x8b, 0x65, 0x59, 0x70, 0x15, 0x37, 0x99, 0xaf, 0x2a, 0xea, 0xdc, 0x9f, 0xf1, 0xad, 0xd0, 0xea
};
static constexpr const char expected[] =
"8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94"
"6c7251d54154cfa92c173a0dd39c1f948b655970153799af2aeadc9ff1add0ea";
template<typename T> void *addressof(T &t) { return &t; }
template<> void *addressof(crypto::secret_key &k) { return addressof(unwrap(unwrap(k))); }
template<typename T>
bool is_formatted()
{
T value{};
static_assert(alignof(T) == 1, "T must have 1 byte alignment");
static_assert(sizeof(T) <= sizeof(source), "T is too large for source");
static_assert(sizeof(T) * 2 <= sizeof(expected), "T is too large for destination");
std::memcpy(addressof(value), source, sizeof(T));
std::stringstream out;
out << "BEGIN" << value << "END";
return out.str() == "BEGIN<" + std::string{expected, sizeof(T) * 2} + ">END";
}
}
TEST(Crypto, Ostream)
{
EXPECT_TRUE(is_formatted<crypto::hash8>());
EXPECT_TRUE(is_formatted<crypto::hash>());
EXPECT_TRUE(is_formatted<crypto::public_key>());
EXPECT_TRUE(is_formatted<crypto::secret_key>());
EXPECT_TRUE(is_formatted<crypto::signature>());
EXPECT_TRUE(is_formatted<crypto::key_derivation>());
EXPECT_TRUE(is_formatted<crypto::key_image>());
}
TEST(Crypto, null_keys)
{
char zero[32];
memset(zero, 0, 32);
ASSERT_EQ(memcmp(crypto::null_skey.data, zero, 32), 0);
ASSERT_EQ(memcmp(crypto::null_pkey.data, zero, 32), 0);
}
TEST(Crypto, verify_32)
{
// all bytes are treated the same, so we can brute force just one byte
unsigned char k0[32] = {0}, k1[32] = {0};
for (unsigned int i0 = 0; i0 < 256; ++i0)
{
k0[0] = i0;
for (unsigned int i1 = 0; i1 < 256; ++i1)
{
k1[0] = i1;
ASSERT_EQ(!crypto_verify_32(k0, k1), i0 == i1);
}
}
}
TEST(Crypto, tree_branch)
{
crypto::hash inputs[6];
crypto::hash branch[8];
crypto::hash root, root2;
size_t depth;
uint32_t path, path2;
auto hasher = [](const crypto::hash &h0, const crypto::hash &h1) -> crypto::hash
{
char buffer[64];
memcpy(buffer, &h0, 32);
memcpy(buffer + 32, &h1, 32);
crypto::hash res;
cn_fast_hash(buffer, 64, res);
return res;
};
for (int n = 0; n < 6; ++n)
{
memset(&inputs[n], 0, 32);
inputs[n].data[0] = n + 1;
}
// empty
ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 0, crypto::null_hash.data, (char(*)[32])branch, &depth, &path));
// one, matching
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 1, inputs[0].data, (char(*)[32])branch, &depth, &path));
ASSERT_EQ(depth, 0);
ASSERT_EQ(path, 0);
ASSERT_TRUE(crypto::tree_path(1, 0, &path2));
ASSERT_EQ(path, path2);
crypto::tree_hash((const char(*)[32])inputs, 1, root.data);
ASSERT_EQ(root, inputs[0]);
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
// one, not found
ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 1, inputs[1].data, (char(*)[32])branch, &depth, &path));
// two, index 0
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[0].data, (char(*)[32])branch, &depth, &path));
ASSERT_EQ(depth, 1);
ASSERT_EQ(path, 0);
ASSERT_TRUE(crypto::tree_path(2, 0, &path2));
ASSERT_EQ(path, path2);
ASSERT_EQ(branch[0], inputs[1]);
crypto::tree_hash((const char(*)[32])inputs, 2, root.data);
ASSERT_EQ(root, hasher(inputs[0], inputs[1]));
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
// two, index 1
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[1].data, (char(*)[32])branch, &depth, &path));
ASSERT_EQ(depth, 1);
ASSERT_EQ(path, 1);
ASSERT_TRUE(crypto::tree_path(2, 1, &path2));
ASSERT_EQ(path, path2);
ASSERT_EQ(branch[0], inputs[0]);
crypto::tree_hash((const char(*)[32])inputs, 2, root.data);
ASSERT_EQ(root, hasher(inputs[0], inputs[1]));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
// two, not found
ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 2, inputs[2].data, (char(*)[32])branch, &depth, &path));
// a b c 0
// x y
// z
// three, index 0
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[0].data, (char(*)[32])branch, &depth, &path));
ASSERT_GE(depth, 1);
ASSERT_LE(depth, 2);
ASSERT_TRUE(crypto::tree_path(3, 0, &path2));
ASSERT_EQ(path, path2);
crypto::tree_hash((const char(*)[32])inputs, 3, root.data);
ASSERT_EQ(root, hasher(inputs[0], hasher(inputs[1], inputs[2])));
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
// three, index 1
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[1].data, (char(*)[32])branch, &depth, &path));
ASSERT_GE(depth, 1);
ASSERT_LE(depth, 2);
ASSERT_TRUE(crypto::tree_path(3, 1, &path2));
ASSERT_EQ(path, path2);
crypto::tree_hash((const char(*)[32])inputs, 3, root.data);
ASSERT_EQ(root, hasher(inputs[0], hasher(inputs[1], inputs[2])));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
// three, index 2
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[2].data, (char(*)[32])branch, &depth, &path));
ASSERT_GE(depth, 1);
ASSERT_LE(depth, 2);
ASSERT_TRUE(crypto::tree_path(3, 2, &path2));
ASSERT_EQ(path, path2);
crypto::tree_hash((const char(*)[32])inputs, 3, root.data);
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_TRUE(crypto::tree_branch_hash(inputs[2].data, (const char(*)[32])branch, depth, path, root2.data));
ASSERT_EQ(root, root2);
// three, not found
ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 3, inputs[3].data, (char(*)[32])branch, &depth, &path));
// a b c d e 0 0 0
// x y
// z
// w
// five, index 0
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[0].data, (char(*)[32])branch, &depth, &path));
ASSERT_GE(depth, 2);
ASSERT_LE(depth, 3);
ASSERT_TRUE(crypto::tree_path(5, 0, &path2));
ASSERT_EQ(path, path2);
crypto::tree_hash((const char(*)[32])inputs, 5, root.data);
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
// five, index 1
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[1].data, (char(*)[32])branch, &depth, &path));
ASSERT_GE(depth, 2);
ASSERT_LE(depth, 3);
ASSERT_TRUE(crypto::tree_path(5, 1, &path2));
ASSERT_EQ(path, path2);
crypto::tree_hash((const char(*)[32])inputs, 5, root.data);
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
// five, index 2
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[2].data, (char(*)[32])branch, &depth, &path));
ASSERT_GE(depth, 2);
ASSERT_LE(depth, 3);
ASSERT_TRUE(crypto::tree_path(5, 2, &path2));
ASSERT_EQ(path, path2);
crypto::tree_hash((const char(*)[32])inputs, 5, root.data);
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
// five, index 4
ASSERT_TRUE(crypto::tree_branch((const char(*)[32])inputs, 5, inputs[4].data, (char(*)[32])branch, &depth, &path));
ASSERT_GE(depth, 2);
ASSERT_LE(depth, 3);
ASSERT_TRUE(crypto::tree_path(5, 4, &path2));
ASSERT_EQ(path, path2);
crypto::tree_hash((const char(*)[32])inputs, 5, root.data);
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[0].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[1].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[2].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[3].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_TRUE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[5].data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(crypto::null_hash.data, root.data, (const char(*)[32])branch, depth, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth - 1, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth + 1, path));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 1));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 2));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])branch, depth, path ^ 3));
ASSERT_FALSE(crypto::is_branch_in_tree(inputs[4].data, root.data, (const char(*)[32])(branch + 1), depth, path));
// five, not found
ASSERT_FALSE(crypto::tree_branch((const char(*)[32])inputs, 5, crypto::null_hash.data, (char(*)[32])branch, &depth, &path));
// depth encoding roundtrip
for (uint32_t n_chains = 1; n_chains <= 65; ++n_chains)
{
for (uint32_t nonce = 0; nonce < 1024; ++nonce)
{
const uint32_t depth = cryptonote::encode_mm_depth(n_chains, nonce);
uint32_t n_chains_2, nonce_2;
ASSERT_TRUE(cryptonote::decode_mm_depth(depth, n_chains_2, nonce_2));
ASSERT_EQ(n_chains, n_chains_2);
ASSERT_EQ(nonce, nonce_2);
}
}
}