monero/tests/unit_tests/multisig.cpp

342 lines
13 KiB
C++

// Copyright (c) 2017-2022, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "crypto/crypto.h"
#include "multisig/multisig_account.h"
#include "multisig/multisig_kex_msg.h"
#include "ringct/rctOps.h"
#include "wallet/wallet2.h"
#include "gtest/gtest.h"
#include <cstdint>
static const struct
{
const char *address;
const char *spendkey;
} test_addresses[] =
{
{
"9uvjbU54ZJb8j7Dcq1h3F1DnBRkxXdYUX4pbJ7mE3ghM8uF3fKzqRKRNAKYZXcNLqMg7MxjVVD2wKC2PALUwEveGSC3YSWD",
"2dd6e34a234c3e8b5d29a371789e4601e96dee4ea6f7ef79224d1a2d91164c01"
},
{
"9ywDBAyDbb6QKFiZxDJ4hHZqZEQXXCR5EaYNcndUpqPDeE7rEgs6neQdZnhcDrWbURYK8xUjhuG2mVjJdmknrZbcG7NnbaB",
"fac47aecc948ce9d3531aa042abb18235b1df632087c55a361b632ffdd6ede0c"
},
{
"9t6Hn946u3eah5cuncH1hB5hGzsTUoevtf4SY7MHN5NgJZh2SFWsyVt3vUhuHyRKyrCQvr71Lfc1AevG3BXE11PQFoXDtD8",
"bbd3175ef9fd9f5eefdc43035f882f74ad14c4cf1799d8b6f9001bc197175d02"
},
{
"9zmAWoNyNPbgnYSm3nJNpAKHm6fCcs3MR94gBWxp9MCDUiMUhyYFfyQETUDLPF7DP6ZsmNo6LRxwPP9VmhHNxKrER9oGigT",
"f2efae45bef1917a7430cda8fcffc4ee010e3178761aa41d4628e23b1fe2d501"
},
{
"9ue8NJMg3WzKxTtmjeXzWYF5KmU6dC7LHEt9wvYdPn2qMmoFUa8hJJHhSHvJ46UEwpDyy5jSboNMRaDBKwU54NT42YcNUp5",
"a4cef54ed3fd61cd78a2ceb82ecf85a903ad2db9a86fb77ff56c35c56016280a"
}
};
static const size_t KEYS_COUNT = 5;
static void make_wallet(unsigned int idx, tools::wallet2 &wallet)
{
ASSERT_TRUE(idx < sizeof(test_addresses) / sizeof(test_addresses[0]));
crypto::secret_key spendkey;
epee::string_tools::hex_to_pod(test_addresses[idx].spendkey, spendkey);
try
{
wallet.init("", boost::none, "", 0, true, epee::net_utils::ssl_support_t::e_ssl_support_disabled);
wallet.set_subaddress_lookahead(1, 1);
wallet.generate("", "", spendkey, true, false);
ASSERT_TRUE(test_addresses[idx].address == wallet.get_account().get_public_address_str(cryptonote::TESTNET));
wallet.decrypt_keys("");
ASSERT_TRUE(test_addresses[idx].spendkey == epee::string_tools::pod_to_hex(wallet.get_account().get_keys().m_spend_secret_key));
wallet.encrypt_keys("");
}
catch (const std::exception &e)
{
MFATAL("Error creating test wallet: " << e.what());
ASSERT_TRUE(0);
}
}
static std::vector<std::string> exchange_round(std::vector<tools::wallet2>& wallets, const std::vector<std::string>& infos)
{
std::vector<std::string> new_infos;
new_infos.reserve(infos.size());
for (size_t i = 0; i < wallets.size(); ++i)
{
new_infos.push_back(wallets[i].exchange_multisig_keys("", infos));
}
return new_infos;
}
static void check_results(const std::vector<std::string> &intermediate_infos,
std::vector<tools::wallet2>& wallets,
std::uint32_t M)
{
// check results
std::unordered_set<crypto::secret_key> unique_privkeys;
rct::key composite_pubkey = rct::identity();
wallets[0].decrypt_keys("");
crypto::public_key spend_pubkey = wallets[0].get_account().get_keys().m_account_address.m_spend_public_key;
crypto::secret_key view_privkey = wallets[0].get_account().get_keys().m_view_secret_key;
crypto::public_key view_pubkey;
EXPECT_TRUE(crypto::secret_key_to_public_key(view_privkey, view_pubkey));
wallets[0].encrypt_keys("");
for (size_t i = 0; i < wallets.size(); ++i)
{
EXPECT_TRUE(!intermediate_infos[i].empty());
bool ready;
uint32_t threshold, total;
EXPECT_TRUE(wallets[i].multisig(&ready, &threshold, &total));
EXPECT_TRUE(ready);
EXPECT_TRUE(threshold == M);
EXPECT_TRUE(total == wallets.size());
wallets[i].decrypt_keys("");
if (i != 0)
{
// "equals" is transitive relation so we need only to compare first wallet's address to each others' addresses.
// no need to compare 0's address with itself.
EXPECT_TRUE(wallets[0].get_account().get_public_address_str(cryptonote::TESTNET) ==
wallets[i].get_account().get_public_address_str(cryptonote::TESTNET));
EXPECT_EQ(spend_pubkey, wallets[i].get_account().get_keys().m_account_address.m_spend_public_key);
EXPECT_EQ(view_privkey, wallets[i].get_account().get_keys().m_view_secret_key);
EXPECT_EQ(view_pubkey, wallets[i].get_account().get_keys().m_account_address.m_view_public_key);
}
// sum together unique multisig keys
for (const auto &privkey : wallets[i].get_account().get_keys().m_multisig_keys)
{
EXPECT_NE(privkey, crypto::null_skey);
if (unique_privkeys.find(privkey) == unique_privkeys.end())
{
unique_privkeys.insert(privkey);
crypto::public_key pubkey;
crypto::secret_key_to_public_key(privkey, pubkey);
EXPECT_NE(privkey, crypto::null_skey);
EXPECT_NE(pubkey, crypto::null_pkey);
EXPECT_NE(pubkey, rct::rct2pk(rct::identity()));
rct::addKeys(composite_pubkey, composite_pubkey, rct::pk2rct(pubkey));
}
}
wallets[i].encrypt_keys("");
}
// final key via sums should equal the wallets' public spend key
wallets[0].decrypt_keys("");
EXPECT_EQ(wallets[0].get_account().get_keys().m_account_address.m_spend_public_key, rct::rct2pk(composite_pubkey));
wallets[0].encrypt_keys("");
}
static void make_wallets(std::vector<tools::wallet2>& wallets, unsigned int M)
{
ASSERT_TRUE(wallets.size() > 1 && wallets.size() <= KEYS_COUNT);
ASSERT_TRUE(M <= wallets.size());
std::uint32_t total_rounds_required = multisig::multisig_kex_rounds_required(wallets.size(), M) + 1;
std::uint32_t rounds_complete{0};
// initialize wallets, get first round multisig kex msgs
std::vector<std::string> initial_infos(wallets.size());
for (size_t i = 0; i < wallets.size(); ++i)
{
make_wallet(i, wallets[i]);
wallets[i].decrypt_keys("");
initial_infos[i] = wallets[i].get_multisig_first_kex_msg();
wallets[i].encrypt_keys("");
}
// wallets should not be multisig yet
for (const auto &wallet: wallets)
{
ASSERT_FALSE(wallet.multisig());
}
// make wallets multisig, get second round kex messages (if appropriate)
std::vector<std::string> intermediate_infos(wallets.size());
for (size_t i = 0; i < wallets.size(); ++i)
{
intermediate_infos[i] = wallets[i].make_multisig("", initial_infos, M);
}
++rounds_complete;
// perform kex rounds until kex is complete
bool ready;
wallets[0].multisig(&ready);
while (!ready)
{
intermediate_infos = exchange_round(wallets, intermediate_infos);
wallets[0].multisig(&ready);
++rounds_complete;
}
EXPECT_EQ(total_rounds_required, rounds_complete);
check_results(intermediate_infos, wallets, M);
}
TEST(multisig, make_1_2)
{
std::vector<tools::wallet2> wallets(2);
make_wallets(wallets, 1);
}
TEST(multisig, make_1_3)
{
std::vector<tools::wallet2> wallets(3);
make_wallets(wallets, 1);
}
TEST(multisig, make_2_2)
{
std::vector<tools::wallet2> wallets(2);
make_wallets(wallets, 2);
}
TEST(multisig, make_3_3)
{
std::vector<tools::wallet2> wallets(3);
make_wallets(wallets, 3);
}
TEST(multisig, make_2_3)
{
std::vector<tools::wallet2> wallets(3);
make_wallets(wallets, 2);
}
TEST(multisig, make_2_4)
{
std::vector<tools::wallet2> wallets(4);
make_wallets(wallets, 2);
}
TEST(multisig, multisig_kex_msg)
{
using namespace multisig;
crypto::public_key pubkey1;
crypto::public_key pubkey2;
crypto::public_key pubkey3;
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey1);
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey2);
crypto::secret_key_to_public_key(rct::rct2sk(rct::skGen()), pubkey3);
crypto::secret_key signing_skey = rct::rct2sk(rct::skGen());
crypto::public_key signing_pubkey;
while(!crypto::secret_key_to_public_key(signing_skey, signing_pubkey))
{
signing_skey = rct::rct2sk(rct::skGen());
}
crypto::secret_key ancillary_skey = rct::rct2sk(rct::skGen());
while (ancillary_skey == crypto::null_skey)
ancillary_skey = rct::rct2sk(rct::skGen());
// misc. edge cases
EXPECT_NO_THROW((multisig_kex_msg{}));
EXPECT_ANY_THROW((multisig_kex_msg{multisig_kex_msg{}.get_msg()}));
EXPECT_ANY_THROW((multisig_kex_msg{"abc"}));
EXPECT_ANY_THROW((multisig_kex_msg{0, crypto::null_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
EXPECT_ANY_THROW((multisig_kex_msg{1, crypto::null_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
EXPECT_ANY_THROW((multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{}, crypto::null_skey}));
EXPECT_ANY_THROW((multisig_kex_msg{1, crypto::null_skey, std::vector<crypto::public_key>{}, ancillary_skey}));
// test that messages are both constructible and reversible
// round 1
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{}, ancillary_skey}.get_msg()
}));
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{1, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey}.get_msg()
}));
// round 2
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey}.get_msg()
}));
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1}, crypto::null_skey}.get_msg()
}));
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2}, ancillary_skey}.get_msg()
}));
EXPECT_NO_THROW((multisig_kex_msg{
multisig_kex_msg{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2, pubkey3}, crypto::null_skey}.get_msg()
}));
// test that keys can be recovered if stored in a message and the message's reverse
// round 1
multisig_kex_msg msg_rnd1{1, signing_skey, std::vector<crypto::public_key>{pubkey1}, ancillary_skey};
multisig_kex_msg msg_rnd1_reverse{msg_rnd1.get_msg()};
EXPECT_EQ(msg_rnd1.get_round(), 1);
EXPECT_EQ(msg_rnd1.get_round(), msg_rnd1_reverse.get_round());
EXPECT_EQ(msg_rnd1.get_signing_pubkey(), signing_pubkey);
EXPECT_EQ(msg_rnd1.get_signing_pubkey(), msg_rnd1_reverse.get_signing_pubkey());
EXPECT_EQ(msg_rnd1.get_msg_pubkeys().size(), 0);
EXPECT_EQ(msg_rnd1.get_msg_pubkeys().size(), msg_rnd1_reverse.get_msg_pubkeys().size());
EXPECT_EQ(msg_rnd1.get_msg_privkey(), ancillary_skey);
EXPECT_EQ(msg_rnd1.get_msg_privkey(), msg_rnd1_reverse.get_msg_privkey());
// round 2
multisig_kex_msg msg_rnd2{2, signing_skey, std::vector<crypto::public_key>{pubkey1, pubkey2}, ancillary_skey};
multisig_kex_msg msg_rnd2_reverse{msg_rnd2.get_msg()};
EXPECT_EQ(msg_rnd2.get_round(), 2);
EXPECT_EQ(msg_rnd2.get_round(), msg_rnd2_reverse.get_round());
EXPECT_EQ(msg_rnd2.get_signing_pubkey(), signing_pubkey);
EXPECT_EQ(msg_rnd2.get_signing_pubkey(), msg_rnd2_reverse.get_signing_pubkey());
ASSERT_EQ(msg_rnd2.get_msg_pubkeys().size(), 2);
ASSERT_EQ(msg_rnd2.get_msg_pubkeys().size(), msg_rnd2_reverse.get_msg_pubkeys().size());
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[0], pubkey1);
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[1], pubkey2);
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[0], msg_rnd2_reverse.get_msg_pubkeys()[0]);
EXPECT_EQ(msg_rnd2.get_msg_pubkeys()[1], msg_rnd2_reverse.get_msg_pubkeys()[1]);
EXPECT_EQ(msg_rnd2.get_msg_privkey(), crypto::null_skey);
EXPECT_EQ(msg_rnd2.get_msg_privkey(), msg_rnd2_reverse.get_msg_privkey());
}