monero/contrib/epee/include/net/abstract_tcp_server2.inl

1926 lines
64 KiB
C++

/**
@file
@author from CrypoNote (see copyright below; Andrey N. Sabelnikov)
@monero rfree
@brief the connection templated-class for one peer connection
*/
// Copyright (c) 2006-2013, Andrey N. Sabelnikov, www.sabelnikov.net
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of the Andrey N. Sabelnikov nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include <boost/foreach.hpp>
#include <boost/uuid/random_generator.hpp>
#include <boost/chrono.hpp>
#include <boost/utility/value_init.hpp>
#include <boost/asio/deadline_timer.hpp>
#include <boost/date_time/posix_time/posix_time.hpp> // TODO
#include <boost/thread/condition_variable.hpp> // TODO
#include <boost/make_shared.hpp>
#include <boost/thread.hpp>
#include "warnings.h"
#include "string_tools_lexical.h"
#include "misc_language.h"
#include <sstream>
#include <iomanip>
#include <algorithm>
#include <functional>
#include <random>
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "net"
#define AGGRESSIVE_TIMEOUT_THRESHOLD 120 // sockets
#define NEW_CONNECTION_TIMEOUT_LOCAL 1200000 // 2 minutes
#define NEW_CONNECTION_TIMEOUT_REMOTE 10000 // 10 seconds
#define DEFAULT_TIMEOUT_MS_LOCAL 1800000 // 30 minutes
#define DEFAULT_TIMEOUT_MS_REMOTE 300000 // 5 minutes
#define TIMEOUT_EXTRA_MS_PER_BYTE 0.2
namespace epee
{
namespace net_utils
{
template<typename T>
T& check_and_get(std::shared_ptr<T>& ptr)
{
CHECK_AND_ASSERT_THROW_MES(bool(ptr), "shared_state cannot be null");
return *ptr;
}
/************************************************************************/
/* */
/************************************************************************/
template<typename T>
unsigned int connection<T>::host_count(int delta)
{
static std::mutex hosts_mutex;
std::lock_guard<std::mutex> guard(hosts_mutex);
static std::map<std::string, unsigned int> hosts;
unsigned int &val = hosts[m_host];
if (delta > 0)
MTRACE("New connection from host " << m_host << ": " << val);
else if (delta < 0)
MTRACE("Closed connection from host " << m_host << ": " << val);
CHECK_AND_ASSERT_THROW_MES(delta >= 0 || val >= (unsigned)-delta, "Count would go negative");
CHECK_AND_ASSERT_THROW_MES(delta <= 0 || val <= std::numeric_limits<unsigned int>::max() - (unsigned)delta, "Count would wrap");
val += delta;
return val;
}
template<typename T>
typename connection<T>::duration_t connection<T>::get_default_timeout()
{
unsigned count{};
try { count = host_count(); } catch (...) {}
const unsigned shift = (
connection_basic::get_state().sock_count > AGGRESSIVE_TIMEOUT_THRESHOLD ?
std::min(std::max(count, 1u) - 1, 8u) :
0
);
return (
m_local ?
std::chrono::milliseconds(DEFAULT_TIMEOUT_MS_LOCAL >> shift) :
std::chrono::milliseconds(DEFAULT_TIMEOUT_MS_REMOTE >> shift)
);
}
template<typename T>
typename connection<T>::duration_t connection<T>::get_timeout_from_bytes_read(size_t bytes) const
{
return std::chrono::duration_cast<connection<T>::duration_t>(
std::chrono::duration<double, std::chrono::milliseconds::period>(
bytes * TIMEOUT_EXTRA_MS_PER_BYTE
)
);
}
template<typename T>
void connection<T>::state_status_check()
{
switch (m_state.status)
{
case status_t::RUNNING:
interrupt();
break;
case status_t::INTERRUPTED:
on_interrupted();
break;
case status_t::TERMINATING:
on_terminating();
break;
default:
break;
}
}
template<typename T>
void connection<T>::start_timer(duration_t duration, bool add)
{
if (m_state.timers.general.wait_expire) {
m_state.timers.general.cancel_expire = true;
m_state.timers.general.reset_expire = true;
ec_t ec;
m_timers.general.expires_from_now(
std::min(
duration + (add ? m_timers.general.expires_from_now() : duration_t{}),
get_default_timeout()
),
ec
);
}
else {
ec_t ec;
m_timers.general.expires_from_now(
std::min(
duration + (add ? m_timers.general.expires_from_now() : duration_t{}),
get_default_timeout()
),
ec
);
async_wait_timer();
}
}
template<typename T>
void connection<T>::async_wait_timer()
{
if (m_state.timers.general.wait_expire)
return;
m_state.timers.general.wait_expire = true;
auto self = connection<T>::shared_from_this();
m_timers.general.async_wait([this, self](const ec_t & ec){
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.timers.general.wait_expire = false;
if (m_state.timers.general.cancel_expire) {
m_state.timers.general.cancel_expire = false;
if (m_state.timers.general.reset_expire) {
m_state.timers.general.reset_expire = false;
async_wait_timer();
}
else if (m_state.status == status_t::INTERRUPTED)
on_interrupted();
else if (m_state.status == status_t::TERMINATING)
on_terminating();
}
else if (m_state.status == status_t::RUNNING)
interrupt();
else if (m_state.status == status_t::INTERRUPTED)
terminate();
});
}
template<typename T>
void connection<T>::cancel_timer()
{
if (!m_state.timers.general.wait_expire)
return;
m_state.timers.general.cancel_expire = true;
m_state.timers.general.reset_expire = false;
ec_t ec;
m_timers.general.cancel(ec);
}
template<typename T>
void connection<T>::start_handshake()
{
if (m_state.socket.wait_handshake)
return;
static_assert(
epee::net_utils::get_ssl_magic_size() <= sizeof(m_state.data.read.buffer),
""
);
auto self = connection<T>::shared_from_this();
if (!m_state.ssl.forced && !m_state.ssl.detected) {
m_state.socket.wait_read = true;
boost::asio::async_read(
connection_basic::socket_.next_layer(),
boost::asio::buffer(
m_state.data.read.buffer.data(),
m_state.data.read.buffer.size()
),
boost::asio::transfer_exactly(epee::net_utils::get_ssl_magic_size()),
m_strand.wrap(
[this, self](const ec_t &ec, size_t bytes_transferred){
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.socket.wait_read = false;
if (m_state.socket.cancel_read) {
m_state.socket.cancel_read = false;
state_status_check();
}
else if (ec.value()) {
terminate();
}
else if (
!epee::net_utils::is_ssl(
static_cast<const unsigned char *>(
m_state.data.read.buffer.data()
),
bytes_transferred
)
) {
m_state.ssl.enabled = false;
m_state.socket.handle_read = true;
connection_basic::strand_.post(
[this, self, bytes_transferred]{
bool success = m_handler.handle_recv(
reinterpret_cast<char *>(m_state.data.read.buffer.data()),
bytes_transferred
);
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.socket.handle_read = false;
if (m_state.status == status_t::INTERRUPTED)
on_interrupted();
else if (m_state.status == status_t::TERMINATING)
on_terminating();
else if (!success)
interrupt();
else {
start_read();
}
}
);
}
else {
m_state.ssl.detected = true;
start_handshake();
}
}
)
);
return;
}
m_state.socket.wait_handshake = true;
auto on_handshake = [this, self](const ec_t &ec, size_t bytes_transferred){
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.socket.wait_handshake = false;
if (m_state.socket.cancel_handshake) {
m_state.socket.cancel_handshake = false;
state_status_check();
}
else if (ec.value()) {
ec_t ec;
connection_basic::socket_.next_layer().shutdown(
socket_t::shutdown_both,
ec
);
connection_basic::socket_.next_layer().close(ec);
m_state.socket.connected = false;
interrupt();
}
else {
m_state.ssl.handshaked = true;
start_write();
start_read();
}
};
const auto handshake = handshake_t::server;
static_cast<shared_state&>(
connection_basic::get_state()
).ssl_options().configure(connection_basic::socket_, handshake);
m_strand.post(
[this, self, on_handshake]{
connection_basic::socket_.async_handshake(
handshake,
boost::asio::buffer(
m_state.data.read.buffer.data(),
m_state.ssl.forced ? 0 :
epee::net_utils::get_ssl_magic_size()
),
m_strand.wrap(on_handshake)
);
}
);
}
template<typename T>
void connection<T>::start_read()
{
if (m_state.timers.throttle.in.wait_expire || m_state.socket.wait_read ||
m_state.socket.handle_read
) {
return;
}
auto self = connection<T>::shared_from_this();
if (m_connection_type != e_connection_type_RPC) {
auto calc_duration = []{
CRITICAL_REGION_LOCAL(
network_throttle_manager_t::m_lock_get_global_throttle_in
);
return std::chrono::duration_cast<connection<T>::duration_t>(
std::chrono::duration<double, std::chrono::seconds::period>(
std::min(
network_throttle_manager_t::get_global_throttle_in(
).get_sleep_time_after_tick(1),
1.0
)
)
);
};
const auto duration = calc_duration();
if (duration > duration_t{}) {
ec_t ec;
m_timers.throttle.in.expires_from_now(duration, ec);
m_state.timers.throttle.in.wait_expire = true;
m_timers.throttle.in.async_wait([this, self](const ec_t &ec){
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.timers.throttle.in.wait_expire = false;
if (m_state.timers.throttle.in.cancel_expire) {
m_state.timers.throttle.in.cancel_expire = false;
state_status_check();
}
else if (ec.value())
interrupt();
else
start_read();
});
return;
}
}
m_state.socket.wait_read = true;
auto on_read = [this, self](const ec_t &ec, size_t bytes_transferred){
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.socket.wait_read = false;
if (m_state.socket.cancel_read) {
m_state.socket.cancel_read = false;
state_status_check();
}
else if (ec.value())
terminate();
else {
{
m_state.stat.in.throttle.handle_trafic_exact(bytes_transferred);
const auto speed = m_state.stat.in.throttle.get_current_speed();
m_conn_context.m_current_speed_down = speed;
m_conn_context.m_max_speed_down = std::max(
m_conn_context.m_max_speed_down,
speed
);
{
CRITICAL_REGION_LOCAL(
network_throttle_manager_t::m_lock_get_global_throttle_in
);
network_throttle_manager_t::get_global_throttle_in(
).handle_trafic_exact(bytes_transferred);
}
connection_basic::logger_handle_net_read(bytes_transferred);
m_conn_context.m_last_recv = time(NULL);
m_conn_context.m_recv_cnt += bytes_transferred;
start_timer(get_timeout_from_bytes_read(bytes_transferred), true);
}
// Post handle_recv to a separate `strand_`, distinct from `m_strand`
// which is listening for reads/writes. This avoids a circular dep.
// handle_recv can queue many writes, and `m_strand` will process those
// writes until the connection terminates without deadlocking waiting
// for handle_recv.
m_state.socket.handle_read = true;
connection_basic::strand_.post(
[this, self, bytes_transferred]{
bool success = m_handler.handle_recv(
reinterpret_cast<char *>(m_state.data.read.buffer.data()),
bytes_transferred
);
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.socket.handle_read = false;
if (m_state.status == status_t::INTERRUPTED)
on_interrupted();
else if (m_state.status == status_t::TERMINATING)
on_terminating();
else if (!success)
interrupt();
else {
start_read();
}
}
);
}
};
if (!m_state.ssl.enabled)
connection_basic::socket_.next_layer().async_read_some(
boost::asio::buffer(
m_state.data.read.buffer.data(),
m_state.data.read.buffer.size()
),
m_strand.wrap(on_read)
);
else
m_strand.post(
[this, self, on_read]{
connection_basic::socket_.async_read_some(
boost::asio::buffer(
m_state.data.read.buffer.data(),
m_state.data.read.buffer.size()
),
m_strand.wrap(on_read)
);
}
);
}
template<typename T>
void connection<T>::start_write()
{
if (m_state.timers.throttle.out.wait_expire || m_state.socket.wait_write ||
m_state.data.write.queue.empty() ||
(m_state.ssl.enabled && !m_state.ssl.handshaked)
) {
return;
}
auto self = connection<T>::shared_from_this();
if (m_connection_type != e_connection_type_RPC) {
auto calc_duration = [this]{
CRITICAL_REGION_LOCAL(
network_throttle_manager_t::m_lock_get_global_throttle_out
);
return std::chrono::duration_cast<connection<T>::duration_t>(
std::chrono::duration<double, std::chrono::seconds::period>(
std::min(
network_throttle_manager_t::get_global_throttle_out(
).get_sleep_time_after_tick(
m_state.data.write.queue.back().size()
),
1.0
)
)
);
};
const auto duration = calc_duration();
if (duration > duration_t{}) {
ec_t ec;
m_timers.throttle.out.expires_from_now(duration, ec);
m_state.timers.throttle.out.wait_expire = true;
m_timers.throttle.out.async_wait([this, self](const ec_t &ec){
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.timers.throttle.out.wait_expire = false;
if (m_state.timers.throttle.out.cancel_expire) {
m_state.timers.throttle.out.cancel_expire = false;
state_status_check();
}
else if (ec.value())
interrupt();
else
start_write();
});
}
}
m_state.socket.wait_write = true;
auto on_write = [this, self](const ec_t &ec, size_t bytes_transferred){
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.socket.wait_write = false;
if (m_state.socket.cancel_write) {
m_state.socket.cancel_write = false;
m_state.data.write.queue.clear();
state_status_check();
}
else if (ec.value()) {
m_state.data.write.queue.clear();
interrupt();
}
else {
{
m_state.stat.out.throttle.handle_trafic_exact(bytes_transferred);
const auto speed = m_state.stat.out.throttle.get_current_speed();
m_conn_context.m_current_speed_up = speed;
m_conn_context.m_max_speed_down = std::max(
m_conn_context.m_max_speed_down,
speed
);
{
CRITICAL_REGION_LOCAL(
network_throttle_manager_t::m_lock_get_global_throttle_out
);
network_throttle_manager_t::get_global_throttle_out(
).handle_trafic_exact(bytes_transferred);
}
connection_basic::logger_handle_net_write(bytes_transferred);
m_conn_context.m_last_send = time(NULL);
m_conn_context.m_send_cnt += bytes_transferred;
start_timer(get_default_timeout(), true);
}
assert(bytes_transferred == m_state.data.write.queue.back().size());
m_state.data.write.queue.pop_back();
m_state.condition.notify_all();
start_write();
}
};
if (!m_state.ssl.enabled)
boost::asio::async_write(
connection_basic::socket_.next_layer(),
boost::asio::buffer(
m_state.data.write.queue.back().data(),
m_state.data.write.queue.back().size()
),
m_strand.wrap(on_write)
);
else
m_strand.post(
[this, self, on_write]{
boost::asio::async_write(
connection_basic::socket_,
boost::asio::buffer(
m_state.data.write.queue.back().data(),
m_state.data.write.queue.back().size()
),
m_strand.wrap(on_write)
);
}
);
}
template<typename T>
void connection<T>::start_shutdown()
{
if (m_state.socket.wait_shutdown)
return;
auto self = connection<T>::shared_from_this();
m_state.socket.wait_shutdown = true;
auto on_shutdown = [this, self](const ec_t &ec){
std::lock_guard<std::mutex> guard(m_state.lock);
m_state.socket.wait_shutdown = false;
if (m_state.socket.cancel_shutdown) {
m_state.socket.cancel_shutdown = false;
switch (m_state.status)
{
case status_t::RUNNING:
interrupt();
break;
case status_t::INTERRUPTED:
terminate();
break;
case status_t::TERMINATING:
on_terminating();
break;
default:
break;
}
}
else if (ec.value())
terminate();
else {
cancel_timer();
on_interrupted();
}
};
m_strand.post(
[this, self, on_shutdown]{
connection_basic::socket_.async_shutdown(
m_strand.wrap(on_shutdown)
);
}
);
start_timer(get_default_timeout());
}
template<typename T>
void connection<T>::cancel_socket()
{
bool wait_socket = false;
if (m_state.socket.wait_handshake)
wait_socket = m_state.socket.cancel_handshake = true;
if (m_state.timers.throttle.in.wait_expire) {
m_state.timers.throttle.in.cancel_expire = true;
ec_t ec;
m_timers.throttle.in.cancel(ec);
}
if (m_state.socket.wait_read)
wait_socket = m_state.socket.cancel_read = true;
if (m_state.timers.throttle.out.wait_expire) {
m_state.timers.throttle.out.cancel_expire = true;
ec_t ec;
m_timers.throttle.out.cancel(ec);
}
if (m_state.socket.wait_write)
wait_socket = m_state.socket.cancel_write = true;
if (m_state.socket.wait_shutdown)
wait_socket = m_state.socket.cancel_shutdown = true;
if (wait_socket) {
ec_t ec;
connection_basic::socket_.next_layer().cancel(ec);
}
}
template<typename T>
void connection<T>::cancel_handler()
{
if (m_state.protocol.released || m_state.protocol.wait_release)
return;
m_state.protocol.wait_release = true;
m_state.lock.unlock();
m_handler.release_protocol();
m_state.lock.lock();
m_state.protocol.wait_release = false;
m_state.protocol.released = true;
if (m_state.status == status_t::INTERRUPTED)
on_interrupted();
else if (m_state.status == status_t::TERMINATING)
on_terminating();
}
template<typename T>
void connection<T>::interrupt()
{
if (m_state.status != status_t::RUNNING)
return;
m_state.status = status_t::INTERRUPTED;
cancel_timer();
cancel_socket();
on_interrupted();
m_state.condition.notify_all();
cancel_handler();
}
template<typename T>
void connection<T>::on_interrupted()
{
assert(m_state.status == status_t::INTERRUPTED);
if (m_state.timers.general.wait_expire)
return;
if (m_state.socket.wait_handshake)
return;
if (m_state.timers.throttle.in.wait_expire)
return;
if (m_state.socket.wait_read)
return;
if (m_state.socket.handle_read)
return;
if (m_state.timers.throttle.out.wait_expire)
return;
if (m_state.socket.wait_write)
return;
if (m_state.socket.wait_shutdown)
return;
if (m_state.protocol.wait_init)
return;
if (m_state.protocol.wait_callback)
return;
if (m_state.protocol.wait_release)
return;
if (m_state.socket.connected) {
if (!m_state.ssl.enabled) {
ec_t ec;
connection_basic::socket_.next_layer().shutdown(
socket_t::shutdown_both,
ec
);
connection_basic::socket_.next_layer().close(ec);
m_state.socket.connected = false;
m_state.status = status_t::WASTED;
}
else
start_shutdown();
}
else
m_state.status = status_t::WASTED;
}
template<typename T>
void connection<T>::terminate()
{
if (m_state.status != status_t::RUNNING &&
m_state.status != status_t::INTERRUPTED
)
return;
m_state.status = status_t::TERMINATING;
cancel_timer();
cancel_socket();
on_terminating();
m_state.condition.notify_all();
cancel_handler();
}
template<typename T>
void connection<T>::on_terminating()
{
assert(m_state.status == status_t::TERMINATING);
if (m_state.timers.general.wait_expire)
return;
if (m_state.socket.wait_handshake)
return;
if (m_state.timers.throttle.in.wait_expire)
return;
if (m_state.socket.wait_read)
return;
if (m_state.socket.handle_read)
return;
if (m_state.timers.throttle.out.wait_expire)
return;
if (m_state.socket.wait_write)
return;
if (m_state.socket.wait_shutdown)
return;
if (m_state.protocol.wait_init)
return;
if (m_state.protocol.wait_callback)
return;
if (m_state.protocol.wait_release)
return;
if (m_state.socket.connected) {
ec_t ec;
connection_basic::socket_.next_layer().shutdown(
socket_t::shutdown_both,
ec
);
connection_basic::socket_.next_layer().close(ec);
m_state.socket.connected = false;
}
m_state.status = status_t::WASTED;
}
template<typename T>
bool connection<T>::send(epee::byte_slice message)
{
std::lock_guard<std::mutex> guard(m_state.lock);
if (m_state.status != status_t::RUNNING || m_state.socket.wait_handshake)
return false;
// Wait for the write queue to fall below the max. If it doesn't after a
// randomized delay, drop the connection.
auto wait_consume = [this] {
auto random_delay = []{
using engine = std::mt19937;
std::random_device dev;
std::seed_seq::result_type rand[
engine::state_size // Use complete bit space
]{};
std::generate_n(rand, engine::state_size, std::ref(dev));
std::seed_seq seed(rand, rand + engine::state_size);
engine rng(seed);
return std::chrono::milliseconds(
std::uniform_int_distribution<>(5000, 6000)(rng)
);
};
if (m_state.data.write.queue.size() <= ABSTRACT_SERVER_SEND_QUE_MAX_COUNT)
return true;
m_state.data.write.wait_consume = true;
bool success = m_state.condition.wait_for(
m_state.lock,
random_delay(),
[this]{
return (
m_state.status != status_t::RUNNING ||
m_state.data.write.queue.size() <=
ABSTRACT_SERVER_SEND_QUE_MAX_COUNT
);
}
);
m_state.data.write.wait_consume = false;
if (!success) {
terminate();
return false;
}
else
return m_state.status == status_t::RUNNING;
};
auto wait_sender = [this] {
m_state.condition.wait(
m_state.lock,
[this] {
return (
m_state.status != status_t::RUNNING ||
!m_state.data.write.wait_consume
);
}
);
return m_state.status == status_t::RUNNING;
};
if (!wait_sender())
return false;
constexpr size_t CHUNK_SIZE = 32 * 1024;
if (m_connection_type == e_connection_type_RPC ||
message.size() <= 2 * CHUNK_SIZE
) {
if (!wait_consume())
return false;
m_state.data.write.queue.emplace_front(std::move(message));
start_write();
}
else {
while (!message.empty()) {
if (!wait_consume())
return false;
m_state.data.write.queue.emplace_front(
message.take_slice(CHUNK_SIZE)
);
start_write();
}
}
m_state.condition.notify_all();
return true;
}
template<typename T>
bool connection<T>::start_internal(
bool is_income,
bool is_multithreaded,
boost::optional<network_address> real_remote
)
{
std::unique_lock<std::mutex> guard(m_state.lock);
if (m_state.status != status_t::TERMINATED)
return false;
if (!real_remote) {
ec_t ec;
auto endpoint = connection_basic::socket_.next_layer().remote_endpoint(
ec
);
if (ec.value())
return false;
real_remote = (
endpoint.address().is_v6() ?
network_address{
ipv6_network_address{endpoint.address().to_v6(), endpoint.port()}
} :
network_address{
ipv4_network_address{
uint32_t{
boost::asio::detail::socket_ops::host_to_network_long(
endpoint.address().to_v4().to_ulong()
)
},
endpoint.port()
}
}
);
}
auto *filter = static_cast<shared_state&>(
connection_basic::get_state()
).pfilter;
if (filter && !filter->is_remote_host_allowed(*real_remote))
return false;
ec_t ec;
#if !defined(_WIN32) || !defined(__i686)
connection_basic::socket_.next_layer().set_option(
boost::asio::detail::socket_option::integer<IPPROTO_IP, IP_TOS>{
connection_basic::get_tos_flag()
},
ec
);
if (ec.value())
return false;
#endif
connection_basic::socket_.next_layer().set_option(
boost::asio::ip::tcp::no_delay{false},
ec
);
if (ec.value())
return false;
connection_basic::m_is_multithreaded = is_multithreaded;
m_conn_context.set_details(
boost::uuids::random_generator()(),
*real_remote,
is_income,
connection_basic::m_ssl_support == ssl_support_t::e_ssl_support_enabled
);
m_host = real_remote->host_str();
try { host_count(1); } catch(...) { /* ignore */ }
m_local = real_remote->is_loopback() || real_remote->is_local();
m_state.ssl.enabled = (
connection_basic::m_ssl_support != ssl_support_t::e_ssl_support_disabled
);
m_state.ssl.forced = (
connection_basic::m_ssl_support == ssl_support_t::e_ssl_support_enabled
);
m_state.socket.connected = true;
m_state.status = status_t::RUNNING;
start_timer(
std::chrono::milliseconds(
m_local ? NEW_CONNECTION_TIMEOUT_LOCAL : NEW_CONNECTION_TIMEOUT_REMOTE
)
);
m_state.protocol.wait_init = true;
guard.unlock();
m_handler.after_init_connection();
guard.lock();
m_state.protocol.wait_init = false;
m_state.protocol.initialized = true;
if (m_state.status == status_t::INTERRUPTED)
on_interrupted();
else if (m_state.status == status_t::TERMINATING)
on_terminating();
else if (!is_income || !m_state.ssl.enabled)
start_read();
else
start_handshake();
return true;
}
template<typename T>
connection<T>::connection(
io_context_t &io_context,
std::shared_ptr<shared_state> shared_state,
t_connection_type connection_type,
ssl_support_t ssl_support
):
connection(
std::move(socket_t{io_context}),
std::move(shared_state),
connection_type,
ssl_support
)
{
}
template<typename T>
connection<T>::connection(
socket_t &&socket,
std::shared_ptr<shared_state> shared_state,
t_connection_type connection_type,
ssl_support_t ssl_support
):
connection_basic(std::move(socket), shared_state, ssl_support),
m_handler(this, *shared_state, m_conn_context),
m_connection_type(connection_type),
m_io_context{GET_IO_SERVICE(connection_basic::socket_)},
m_strand{m_io_context},
m_timers{m_io_context}
{
}
template<typename T>
connection<T>::~connection() noexcept(false)
{
std::lock_guard<std::mutex> guard(m_state.lock);
assert(m_state.status == status_t::TERMINATED ||
m_state.status == status_t::WASTED ||
m_io_context.stopped()
);
if (m_state.status != status_t::WASTED)
return;
try { host_count(-1); } catch (...) { /* ignore */ }
}
template<typename T>
bool connection<T>::start(
bool is_income,
bool is_multithreaded
)
{
return start_internal(is_income, is_multithreaded, {});
}
template<typename T>
bool connection<T>::start(
bool is_income,
bool is_multithreaded,
network_address real_remote
)
{
return start_internal(is_income, is_multithreaded, real_remote);
}
template<typename T>
void connection<T>::save_dbg_log()
{
std::lock_guard<std::mutex> guard(m_state.lock);
std::string address;
std::string port;
ec_t ec;
auto endpoint = connection_basic::socket().remote_endpoint(ec);
if (ec.value()) {
address = "<not connected>";
port = "<not connected>";
}
else {
address = endpoint.address().to_string();
port = std::to_string(endpoint.port());
}
MDEBUG(
" connection type " << std::to_string(m_connection_type) <<
" " << connection_basic::socket().local_endpoint().address().to_string() <<
":" << connection_basic::socket().local_endpoint().port() <<
" <--> " << m_conn_context.m_remote_address.str() <<
" (via " << address << ":" << port << ")"
);
}
template<typename T>
bool connection<T>::speed_limit_is_enabled() const
{
return m_connection_type != e_connection_type_RPC;
}
template<typename T>
bool connection<T>::cancel()
{
return close();
}
template<typename T>
bool connection<T>::do_send(byte_slice message)
{
return send(std::move(message));
}
template<typename T>
bool connection<T>::send_done()
{
return true;
}
template<typename T>
bool connection<T>::close()
{
std::lock_guard<std::mutex> guard(m_state.lock);
if (m_state.status != status_t::RUNNING)
return false;
terminate();
return true;
}
template<typename T>
bool connection<T>::call_run_once_service_io()
{
if(connection_basic::m_is_multithreaded) {
if (!m_io_context.poll_one())
misc_utils::sleep_no_w(1);
}
else {
if (!m_io_context.run_one())
return false;
}
return true;
}
template<typename T>
bool connection<T>::request_callback()
{
std::lock_guard<std::mutex> guard(m_state.lock);
if (m_state.status != status_t::RUNNING)
return false;
auto self = connection<T>::shared_from_this();
++m_state.protocol.wait_callback;
connection_basic::strand_.post([this, self]{
m_handler.handle_qued_callback();
std::lock_guard<std::mutex> guard(m_state.lock);
--m_state.protocol.wait_callback;
if (m_state.status == status_t::INTERRUPTED)
on_interrupted();
else if (m_state.status == status_t::TERMINATING)
on_terminating();
});
return true;
}
template<typename T>
typename connection<T>::io_context_t &connection<T>::get_io_service()
{
return m_io_context;
}
template<typename T>
bool connection<T>::add_ref()
{
try {
auto self = connection<T>::shared_from_this();
std::lock_guard<std::mutex> guard(m_state.lock);
this->self = std::move(self);
++m_state.protocol.reference_counter;
return true;
}
catch (boost::bad_weak_ptr &exception) {
return false;
}
}
template<typename T>
bool connection<T>::release()
{
connection_ptr self;
std::lock_guard<std::mutex> guard(m_state.lock);
if (!(--m_state.protocol.reference_counter))
self = std::move(this->self);
return true;
}
template<typename T>
void connection<T>::setRpcStation()
{
std::lock_guard<std::mutex> guard(m_state.lock);
m_connection_type = e_connection_type_RPC;
}
template<class t_protocol_handler>
boosted_tcp_server<t_protocol_handler>::boosted_tcp_server( t_connection_type connection_type ) :
m_state(std::make_shared<typename connection<t_protocol_handler>::shared_state>()),
m_io_service_local_instance(new worker()),
io_service_(m_io_service_local_instance->io_service),
acceptor_(io_service_),
acceptor_ipv6(io_service_),
default_remote(),
m_stop_signal_sent(false), m_port(0),
m_threads_count(0),
m_thread_index(0),
m_connection_type( connection_type ),
new_connection_(),
new_connection_ipv6()
{
create_server_type_map();
m_thread_name_prefix = "NET";
}
template<class t_protocol_handler>
boosted_tcp_server<t_protocol_handler>::boosted_tcp_server(boost::asio::io_service& extarnal_io_service, t_connection_type connection_type) :
m_state(std::make_shared<typename connection<t_protocol_handler>::shared_state>()),
io_service_(extarnal_io_service),
acceptor_(io_service_),
acceptor_ipv6(io_service_),
default_remote(),
m_stop_signal_sent(false), m_port(0),
m_threads_count(0),
m_thread_index(0),
m_connection_type(connection_type),
new_connection_(),
new_connection_ipv6()
{
create_server_type_map();
m_thread_name_prefix = "NET";
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
boosted_tcp_server<t_protocol_handler>::~boosted_tcp_server()
{
this->send_stop_signal();
timed_wait_server_stop(10000);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
void boosted_tcp_server<t_protocol_handler>::create_server_type_map()
{
server_type_map["NET"] = e_connection_type_NET;
server_type_map["RPC"] = e_connection_type_RPC;
server_type_map["P2P"] = e_connection_type_P2P;
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
bool boosted_tcp_server<t_protocol_handler>::init_server(uint32_t port, const std::string& address,
uint32_t port_ipv6, const std::string& address_ipv6, bool use_ipv6, bool require_ipv4,
ssl_options_t ssl_options)
{
TRY_ENTRY();
m_stop_signal_sent = false;
m_port = port;
m_port_ipv6 = port_ipv6;
m_address = address;
m_address_ipv6 = address_ipv6;
m_use_ipv6 = use_ipv6;
m_require_ipv4 = require_ipv4;
if (ssl_options)
m_state->configure_ssl(std::move(ssl_options));
std::string ipv4_failed = "";
std::string ipv6_failed = "";
try
{
boost::asio::ip::tcp::resolver resolver(io_service_);
boost::asio::ip::tcp::resolver::query query(address, boost::lexical_cast<std::string>(port), boost::asio::ip::tcp::resolver::query::canonical_name);
boost::asio::ip::tcp::endpoint endpoint = *resolver.resolve(query);
acceptor_.open(endpoint.protocol());
#if !defined(_WIN32)
acceptor_.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
#endif
acceptor_.bind(endpoint);
acceptor_.listen();
boost::asio::ip::tcp::endpoint binded_endpoint = acceptor_.local_endpoint();
m_port = binded_endpoint.port();
MDEBUG("start accept (IPv4)");
new_connection_.reset(new connection<t_protocol_handler>(io_service_, m_state, m_connection_type, m_state->ssl_options().support));
acceptor_.async_accept(new_connection_->socket(),
boost::bind(&boosted_tcp_server<t_protocol_handler>::handle_accept_ipv4, this,
boost::asio::placeholders::error));
}
catch (const std::exception &e)
{
ipv4_failed = e.what();
}
if (ipv4_failed != "")
{
MERROR("Failed to bind IPv4: " << ipv4_failed);
if (require_ipv4)
{
throw std::runtime_error("Failed to bind IPv4 (set to required)");
}
}
if (use_ipv6)
{
try
{
if (port_ipv6 == 0) port_ipv6 = port; // default arg means bind to same port as ipv4
boost::asio::ip::tcp::resolver resolver(io_service_);
boost::asio::ip::tcp::resolver::query query(address_ipv6, boost::lexical_cast<std::string>(port_ipv6), boost::asio::ip::tcp::resolver::query::canonical_name);
boost::asio::ip::tcp::endpoint endpoint = *resolver.resolve(query);
acceptor_ipv6.open(endpoint.protocol());
#if !defined(_WIN32)
acceptor_ipv6.set_option(boost::asio::ip::tcp::acceptor::reuse_address(true));
#endif
acceptor_ipv6.set_option(boost::asio::ip::v6_only(true));
acceptor_ipv6.bind(endpoint);
acceptor_ipv6.listen();
boost::asio::ip::tcp::endpoint binded_endpoint = acceptor_ipv6.local_endpoint();
m_port_ipv6 = binded_endpoint.port();
MDEBUG("start accept (IPv6)");
new_connection_ipv6.reset(new connection<t_protocol_handler>(io_service_, m_state, m_connection_type, m_state->ssl_options().support));
acceptor_ipv6.async_accept(new_connection_ipv6->socket(),
boost::bind(&boosted_tcp_server<t_protocol_handler>::handle_accept_ipv6, this,
boost::asio::placeholders::error));
}
catch (const std::exception &e)
{
ipv6_failed = e.what();
}
}
if (use_ipv6 && ipv6_failed != "")
{
MERROR("Failed to bind IPv6: " << ipv6_failed);
if (ipv4_failed != "")
{
throw std::runtime_error("Failed to bind IPv4 and IPv6");
}
}
return true;
}
catch (const std::exception &e)
{
MFATAL("Error starting server: " << e.what());
return false;
}
catch (...)
{
MFATAL("Error starting server");
return false;
}
}
//-----------------------------------------------------------------------------
template<class t_protocol_handler>
bool boosted_tcp_server<t_protocol_handler>::init_server(const std::string port, const std::string& address,
const std::string port_ipv6, const std::string address_ipv6, bool use_ipv6, bool require_ipv4,
ssl_options_t ssl_options)
{
uint32_t p = 0;
uint32_t p_ipv6 = 0;
if (port.size() && !string_tools::get_xtype_from_string(p, port)) {
MERROR("Failed to convert port no = " << port);
return false;
}
if (port_ipv6.size() && !string_tools::get_xtype_from_string(p_ipv6, port_ipv6)) {
MERROR("Failed to convert port no = " << port_ipv6);
return false;
}
return this->init_server(p, address, p_ipv6, address_ipv6, use_ipv6, require_ipv4, std::move(ssl_options));
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
bool boosted_tcp_server<t_protocol_handler>::worker_thread()
{
TRY_ENTRY();
const uint32_t local_thr_index = m_thread_index++; // atomically increment, getting value before increment
std::string thread_name = std::string("[") + m_thread_name_prefix;
thread_name += boost::to_string(local_thr_index) + "]";
MLOG_SET_THREAD_NAME(thread_name);
// _fact("Thread name: " << m_thread_name_prefix);
while(!m_stop_signal_sent)
{
try
{
io_service_.run();
return true;
}
catch(const std::exception& ex)
{
_erro("Exception at server worker thread, what=" << ex.what());
}
catch(...)
{
_erro("Exception at server worker thread, unknown execption");
}
}
//_info("Worker thread finished");
return true;
CATCH_ENTRY_L0("boosted_tcp_server<t_protocol_handler>::worker_thread", false);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
void boosted_tcp_server<t_protocol_handler>::set_threads_prefix(const std::string& prefix_name)
{
m_thread_name_prefix = prefix_name;
auto it = server_type_map.find(m_thread_name_prefix);
if (it==server_type_map.end()) throw std::runtime_error("Unknown prefix/server type:" + std::string(prefix_name));
auto connection_type = it->second; // the value of type
MINFO("Set server type to: " << connection_type << " from name: " << m_thread_name_prefix << ", prefix_name = " << prefix_name);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
void boosted_tcp_server<t_protocol_handler>::set_connection_filter(i_connection_filter* pfilter)
{
assert(m_state != nullptr); // always set in constructor
m_state->pfilter = pfilter;
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
bool boosted_tcp_server<t_protocol_handler>::run_server(size_t threads_count, bool wait, const boost::thread::attributes& attrs)
{
TRY_ENTRY();
m_threads_count = threads_count;
m_main_thread_id = boost::this_thread::get_id();
MLOG_SET_THREAD_NAME("[SRV_MAIN]");
while(!m_stop_signal_sent)
{
// Create a pool of threads to run all of the io_services.
CRITICAL_REGION_BEGIN(m_threads_lock);
for (std::size_t i = 0; i < threads_count; ++i)
{
boost::shared_ptr<boost::thread> thread(new boost::thread(
attrs, boost::bind(&boosted_tcp_server<t_protocol_handler>::worker_thread, this)));
_note("Run server thread name: " << m_thread_name_prefix);
m_threads.push_back(thread);
}
CRITICAL_REGION_END();
// Wait for all threads in the pool to exit.
if (wait)
{
_fact("JOINING all threads");
for (std::size_t i = 0; i < m_threads.size(); ++i) {
m_threads[i]->join();
}
_fact("JOINING all threads - almost");
m_threads.clear();
_fact("JOINING all threads - DONE");
}
else {
_dbg1("Reiniting OK.");
return true;
}
if(wait && !m_stop_signal_sent)
{
//some problems with the listening socket ?..
_dbg1("Net service stopped without stop request, restarting...");
if(!this->init_server(m_port, m_address, m_port_ipv6, m_address_ipv6, m_use_ipv6, m_require_ipv4))
{
_dbg1("Reiniting service failed, exit.");
return false;
}else
{
_dbg1("Reiniting OK.");
}
}
}
return true;
CATCH_ENTRY_L0("boosted_tcp_server<t_protocol_handler>::run_server", false);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
bool boosted_tcp_server<t_protocol_handler>::is_thread_worker()
{
TRY_ENTRY();
CRITICAL_REGION_LOCAL(m_threads_lock);
BOOST_FOREACH(boost::shared_ptr<boost::thread>& thp, m_threads)
{
if(thp->get_id() == boost::this_thread::get_id())
return true;
}
if(m_threads_count == 1 && boost::this_thread::get_id() == m_main_thread_id)
return true;
return false;
CATCH_ENTRY_L0("boosted_tcp_server<t_protocol_handler>::is_thread_worker", false);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
bool boosted_tcp_server<t_protocol_handler>::timed_wait_server_stop(uint64_t wait_mseconds)
{
TRY_ENTRY();
boost::chrono::milliseconds ms(wait_mseconds);
for (std::size_t i = 0; i < m_threads.size(); ++i)
{
if(m_threads[i]->joinable() && !m_threads[i]->try_join_for(ms))
{
_dbg1("Interrupting thread " << m_threads[i]->native_handle());
m_threads[i]->interrupt();
}
}
return true;
CATCH_ENTRY_L0("boosted_tcp_server<t_protocol_handler>::timed_wait_server_stop", false);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
void boosted_tcp_server<t_protocol_handler>::send_stop_signal()
{
m_stop_signal_sent = true;
typename connection<t_protocol_handler>::shared_state *state = static_cast<typename connection<t_protocol_handler>::shared_state*>(m_state.get());
state->stop_signal_sent = true;
TRY_ENTRY();
connections_mutex.lock();
for (auto &c: connections_)
{
c->cancel();
}
connections_.clear();
connections_mutex.unlock();
io_service_.stop();
CATCH_ENTRY_L0("boosted_tcp_server<t_protocol_handler>::send_stop_signal()", void());
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
void boosted_tcp_server<t_protocol_handler>::handle_accept_ipv4(const boost::system::error_code& e)
{
this->handle_accept(e, false);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
void boosted_tcp_server<t_protocol_handler>::handle_accept_ipv6(const boost::system::error_code& e)
{
this->handle_accept(e, true);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
void boosted_tcp_server<t_protocol_handler>::handle_accept(const boost::system::error_code& e, bool ipv6)
{
MDEBUG("handle_accept");
boost::asio::ip::tcp::acceptor* current_acceptor = &acceptor_;
connection_ptr* current_new_connection = &new_connection_;
auto accept_function_pointer = &boosted_tcp_server<t_protocol_handler>::handle_accept_ipv4;
if (ipv6)
{
current_acceptor = &acceptor_ipv6;
current_new_connection = &new_connection_ipv6;
accept_function_pointer = &boosted_tcp_server<t_protocol_handler>::handle_accept_ipv6;
}
try
{
if (!e)
{
if (m_connection_type == e_connection_type_RPC) {
const char *ssl_message = "unknown";
switch ((*current_new_connection)->get_ssl_support())
{
case epee::net_utils::ssl_support_t::e_ssl_support_disabled: ssl_message = "disabled"; break;
case epee::net_utils::ssl_support_t::e_ssl_support_enabled: ssl_message = "enabled"; break;
case epee::net_utils::ssl_support_t::e_ssl_support_autodetect: ssl_message = "autodetection"; break;
}
MDEBUG("New server for RPC connections, SSL " << ssl_message);
(*current_new_connection)->setRpcStation(); // hopefully this is not needed actually
}
connection_ptr conn(std::move((*current_new_connection)));
(*current_new_connection).reset(new connection<t_protocol_handler>(io_service_, m_state, m_connection_type, conn->get_ssl_support()));
current_acceptor->async_accept((*current_new_connection)->socket(),
boost::bind(accept_function_pointer, this,
boost::asio::placeholders::error));
boost::asio::socket_base::keep_alive opt(true);
conn->socket().set_option(opt);
bool res;
if (default_remote.get_type_id() == net_utils::address_type::invalid)
res = conn->start(true, 1 < m_threads_count);
else
res = conn->start(true, 1 < m_threads_count, default_remote);
if (!res)
{
conn->cancel();
return;
}
conn->save_dbg_log();
return;
}
else
{
MERROR("Error in boosted_tcp_server<t_protocol_handler>::handle_accept: " << e);
}
}
catch (const std::exception &e)
{
MERROR("Exception in boosted_tcp_server<t_protocol_handler>::handle_accept: " << e.what());
}
// error path, if e or exception
assert(m_state != nullptr); // always set in constructor
_erro("Some problems at accept: " << e.message() << ", connections_count = " << m_state->sock_count);
misc_utils::sleep_no_w(100);
(*current_new_connection).reset(new connection<t_protocol_handler>(io_service_, m_state, m_connection_type, (*current_new_connection)->get_ssl_support()));
current_acceptor->async_accept((*current_new_connection)->socket(),
boost::bind(accept_function_pointer, this,
boost::asio::placeholders::error));
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
bool boosted_tcp_server<t_protocol_handler>::add_connection(t_connection_context& out, boost::asio::ip::tcp::socket&& sock, network_address real_remote, epee::net_utils::ssl_support_t ssl_support)
{
if(std::addressof(get_io_service()) == std::addressof(GET_IO_SERVICE(sock)))
{
connection_ptr conn(new connection<t_protocol_handler>(std::move(sock), m_state, m_connection_type, ssl_support));
if(conn->start(false, 1 < m_threads_count, std::move(real_remote)))
{
conn->get_context(out);
conn->save_dbg_log();
return true;
}
}
else
{
MWARNING(out << " was not added, socket/io_service mismatch");
}
return false;
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
typename boosted_tcp_server<t_protocol_handler>::try_connect_result_t boosted_tcp_server<t_protocol_handler>::try_connect(connection_ptr new_connection_l, const std::string& adr, const std::string& port, boost::asio::ip::tcp::socket &sock_, const boost::asio::ip::tcp::endpoint &remote_endpoint, const std::string &bind_ip, uint32_t conn_timeout, epee::net_utils::ssl_support_t ssl_support)
{
TRY_ENTRY();
sock_.open(remote_endpoint.protocol());
if(bind_ip != "0.0.0.0" && bind_ip != "0" && bind_ip != "" )
{
boost::asio::ip::tcp::endpoint local_endpoint(boost::asio::ip::address::from_string(bind_ip.c_str()), 0);
boost::system::error_code ec;
sock_.bind(local_endpoint, ec);
if (ec)
{
MERROR("Error binding to " << bind_ip << ": " << ec.message());
if (sock_.is_open())
sock_.close();
return CONNECT_FAILURE;
}
}
/*
NOTICE: be careful to make sync connection from event handler: in case if all threads suddenly do sync connect, there will be no thread to dispatch events from io service.
*/
boost::system::error_code ec = boost::asio::error::would_block;
//have another free thread(s), work in wait mode, without event handling
struct local_async_context
{
boost::system::error_code ec;
boost::mutex connect_mut;
boost::condition_variable cond;
};
boost::shared_ptr<local_async_context> local_shared_context(new local_async_context());
local_shared_context->ec = boost::asio::error::would_block;
boost::unique_lock<boost::mutex> lock(local_shared_context->connect_mut);
auto connect_callback = [](boost::system::error_code ec_, boost::shared_ptr<local_async_context> shared_context)
{
shared_context->connect_mut.lock(); shared_context->ec = ec_; shared_context->cond.notify_one(); shared_context->connect_mut.unlock();
};
sock_.async_connect(remote_endpoint, std::bind<void>(connect_callback, std::placeholders::_1, local_shared_context));
while(local_shared_context->ec == boost::asio::error::would_block)
{
bool r = local_shared_context->cond.timed_wait(lock, boost::get_system_time() + boost::posix_time::milliseconds(conn_timeout));
if (m_stop_signal_sent)
{
if (sock_.is_open())
sock_.close();
return CONNECT_FAILURE;
}
if(local_shared_context->ec == boost::asio::error::would_block && !r)
{
//timeout
sock_.close();
_dbg3("Failed to connect to " << adr << ":" << port << ", because of timeout (" << conn_timeout << ")");
return CONNECT_FAILURE;
}
}
ec = local_shared_context->ec;
if (ec || !sock_.is_open())
{
_dbg3("Some problems at connect, message: " << ec.message());
if (sock_.is_open())
sock_.close();
return CONNECT_FAILURE;
}
_dbg3("Connected success to " << adr << ':' << port);
const ssl_support_t ssl_support = new_connection_l->get_ssl_support();
if (ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_enabled || ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_autodetect)
{
// Handshake
MDEBUG("Handshaking SSL...");
if (!new_connection_l->handshake(boost::asio::ssl::stream_base::client))
{
if (ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_autodetect)
{
boost::system::error_code ignored_ec;
sock_.shutdown(boost::asio::ip::tcp::socket::shutdown_both, ignored_ec);
sock_.close();
return CONNECT_NO_SSL;
}
MERROR("SSL handshake failed");
if (sock_.is_open())
sock_.close();
return CONNECT_FAILURE;
}
}
return CONNECT_SUCCESS;
CATCH_ENTRY_L0("boosted_tcp_server<t_protocol_handler>::try_connect", CONNECT_FAILURE);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler>
bool boosted_tcp_server<t_protocol_handler>::connect(const std::string& adr, const std::string& port, uint32_t conn_timeout, t_connection_context& conn_context, const std::string& bind_ip, epee::net_utils::ssl_support_t ssl_support)
{
TRY_ENTRY();
connection_ptr new_connection_l(new connection<t_protocol_handler>(io_service_, m_state, m_connection_type, ssl_support) );
connections_mutex.lock();
connections_.insert(new_connection_l);
MDEBUG("connections_ size now " << connections_.size());
connections_mutex.unlock();
epee::misc_utils::auto_scope_leave_caller scope_exit_handler = epee::misc_utils::create_scope_leave_handler([&](){ CRITICAL_REGION_LOCAL(connections_mutex); connections_.erase(new_connection_l); });
boost::asio::ip::tcp::socket& sock_ = new_connection_l->socket();
bool try_ipv6 = false;
boost::asio::ip::tcp::resolver resolver(io_service_);
boost::asio::ip::tcp::resolver::query query(boost::asio::ip::tcp::v4(), adr, port, boost::asio::ip::tcp::resolver::query::canonical_name);
boost::system::error_code resolve_error;
boost::asio::ip::tcp::resolver::iterator iterator;
try
{
//resolving ipv4 address as ipv6 throws, catch here and move on
iterator = resolver.resolve(query, resolve_error);
}
catch (const boost::system::system_error& e)
{
if (!m_use_ipv6 || (resolve_error != boost::asio::error::host_not_found &&
resolve_error != boost::asio::error::host_not_found_try_again))
{
throw;
}
try_ipv6 = true;
}
catch (...)
{
throw;
}
std::string bind_ip_to_use;
boost::asio::ip::tcp::resolver::iterator end;
if(iterator == end)
{
if (!m_use_ipv6)
{
_erro("Failed to resolve " << adr);
return false;
}
else
{
try_ipv6 = true;
MINFO("Resolving address as IPv4 failed, trying IPv6");
}
}
else
{
bind_ip_to_use = bind_ip;
}
if (try_ipv6)
{
boost::asio::ip::tcp::resolver::query query6(boost::asio::ip::tcp::v6(), adr, port, boost::asio::ip::tcp::resolver::query::canonical_name);
iterator = resolver.resolve(query6, resolve_error);
if(iterator == end)
{
_erro("Failed to resolve " << adr);
return false;
}
else
{
if (bind_ip == "0.0.0.0")
{
bind_ip_to_use = "::";
}
else
{
bind_ip_to_use = "";
}
}
}
MDEBUG("Trying to connect to " << adr << ":" << port << ", bind_ip = " << bind_ip_to_use);
//boost::asio::ip::tcp::endpoint remote_endpoint(boost::asio::ip::address::from_string(addr.c_str()), port);
boost::asio::ip::tcp::endpoint remote_endpoint(*iterator);
auto try_connect_result = try_connect(new_connection_l, adr, port, sock_, remote_endpoint, bind_ip_to_use, conn_timeout, ssl_support);
if (try_connect_result == CONNECT_FAILURE)
return false;
if (ssl_support == epee::net_utils::ssl_support_t::e_ssl_support_autodetect && try_connect_result == CONNECT_NO_SSL)
{
// we connected, but could not connect with SSL, try without
MERROR("SSL handshake failed on an autodetect connection, reconnecting without SSL");
new_connection_l->disable_ssl();
try_connect_result = try_connect(new_connection_l, adr, port, sock_, remote_endpoint, bind_ip_to_use, conn_timeout, epee::net_utils::ssl_support_t::e_ssl_support_disabled);
if (try_connect_result != CONNECT_SUCCESS)
return false;
}
// start adds the connection to the config object's list, so we don't need to have it locally anymore
connections_mutex.lock();
connections_.erase(new_connection_l);
connections_mutex.unlock();
bool r = new_connection_l->start(false, 1 < m_threads_count);
if (r)
{
new_connection_l->get_context(conn_context);
//new_connection_l.reset(new connection<t_protocol_handler>(io_service_, m_config, m_sock_count, m_pfilter));
}
else
{
assert(m_state != nullptr); // always set in constructor
_erro("[sock " << new_connection_l->socket().native_handle() << "] Failed to start connection, connections_count = " << m_state->sock_count);
}
new_connection_l->save_dbg_log();
return r;
CATCH_ENTRY_L0("boosted_tcp_server<t_protocol_handler>::connect", false);
}
//---------------------------------------------------------------------------------
template<class t_protocol_handler> template<class t_callback>
bool boosted_tcp_server<t_protocol_handler>::connect_async(const std::string& adr, const std::string& port, uint32_t conn_timeout, const t_callback &cb, const std::string& bind_ip, epee::net_utils::ssl_support_t ssl_support)
{
TRY_ENTRY();
connection_ptr new_connection_l(new connection<t_protocol_handler>(io_service_, m_state, m_connection_type, ssl_support) );
connections_mutex.lock();
connections_.insert(new_connection_l);
MDEBUG("connections_ size now " << connections_.size());
connections_mutex.unlock();
epee::misc_utils::auto_scope_leave_caller scope_exit_handler = epee::misc_utils::create_scope_leave_handler([&](){ CRITICAL_REGION_LOCAL(connections_mutex); connections_.erase(new_connection_l); });
boost::asio::ip::tcp::socket& sock_ = new_connection_l->socket();
bool try_ipv6 = false;
boost::asio::ip::tcp::resolver resolver(io_service_);
boost::asio::ip::tcp::resolver::query query(boost::asio::ip::tcp::v4(), adr, port, boost::asio::ip::tcp::resolver::query::canonical_name);
boost::system::error_code resolve_error;
boost::asio::ip::tcp::resolver::iterator iterator;
try
{
//resolving ipv4 address as ipv6 throws, catch here and move on
iterator = resolver.resolve(query, resolve_error);
}
catch (const boost::system::system_error& e)
{
if (!m_use_ipv6 || (resolve_error != boost::asio::error::host_not_found &&
resolve_error != boost::asio::error::host_not_found_try_again))
{
throw;
}
try_ipv6 = true;
}
catch (...)
{
throw;
}
boost::asio::ip::tcp::resolver::iterator end;
if(iterator == end)
{
if (!try_ipv6)
{
_erro("Failed to resolve " << adr);
return false;
}
else
{
MINFO("Resolving address as IPv4 failed, trying IPv6");
}
}
if (try_ipv6)
{
boost::asio::ip::tcp::resolver::query query6(boost::asio::ip::tcp::v6(), adr, port, boost::asio::ip::tcp::resolver::query::canonical_name);
iterator = resolver.resolve(query6, resolve_error);
if(iterator == end)
{
_erro("Failed to resolve " << adr);
return false;
}
}
boost::asio::ip::tcp::endpoint remote_endpoint(*iterator);
sock_.open(remote_endpoint.protocol());
if(bind_ip != "0.0.0.0" && bind_ip != "0" && bind_ip != "" )
{
boost::asio::ip::tcp::endpoint local_endpoint(boost::asio::ip::address::from_string(bind_ip.c_str()), 0);
boost::system::error_code ec;
sock_.bind(local_endpoint, ec);
if (ec)
{
MERROR("Error binding to " << bind_ip << ": " << ec.message());
if (sock_.is_open())
sock_.close();
return false;
}
}
boost::shared_ptr<boost::asio::deadline_timer> sh_deadline(new boost::asio::deadline_timer(io_service_));
//start deadline
sh_deadline->expires_from_now(boost::posix_time::milliseconds(conn_timeout));
sh_deadline->async_wait([=](const boost::system::error_code& error)
{
if(error != boost::asio::error::operation_aborted)
{
_dbg3("Failed to connect to " << adr << ':' << port << ", because of timeout (" << conn_timeout << ")");
new_connection_l->socket().close();
}
});
//start async connect
sock_.async_connect(remote_endpoint, [=](const boost::system::error_code& ec_)
{
t_connection_context conn_context = AUTO_VAL_INIT(conn_context);
boost::system::error_code ignored_ec;
boost::asio::ip::tcp::socket::endpoint_type lep = new_connection_l->socket().local_endpoint(ignored_ec);
if(!ec_)
{//success
if(!sh_deadline->cancel())
{
cb(conn_context, boost::asio::error::operation_aborted);//this mean that deadline timer already queued callback with cancel operation, rare situation
}else
{
_dbg3("[sock " << new_connection_l->socket().native_handle() << "] Connected success to " << adr << ':' << port <<
" from " << lep.address().to_string() << ':' << lep.port());
// start adds the connection to the config object's list, so we don't need to have it locally anymore
connections_mutex.lock();
connections_.erase(new_connection_l);
connections_mutex.unlock();
bool r = new_connection_l->start(false, 1 < m_threads_count);
if (r)
{
new_connection_l->get_context(conn_context);
cb(conn_context, ec_);
}
else
{
_dbg3("[sock " << new_connection_l->socket().native_handle() << "] Failed to start connection to " << adr << ':' << port);
cb(conn_context, boost::asio::error::fault);
}
}
}else
{
_dbg3("[sock " << new_connection_l->socket().native_handle() << "] Failed to connect to " << adr << ':' << port <<
" from " << lep.address().to_string() << ':' << lep.port() << ": " << ec_.message() << ':' << ec_.value());
cb(conn_context, ec_);
}
});
return true;
CATCH_ENTRY_L0("boosted_tcp_server<t_protocol_handler>::connect_async", false);
}
} // namespace
} // namespace