monero/external/net_skeleton/modules/skeleton.c

958 lines
28 KiB
C

/* Copyright (c) 2014 Cesanta Software Limited
* All rights reserved
*
* This software is dual-licensed: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation. For the terms of this
* license, see <http://www.gnu.org/licenses/>.
*
* You are free to use this software under the terms of the GNU General
* Public License, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* Alternatively, you can license this software under a commercial
* license, as set out in <http://cesanta.com/>.
*
* $Date: 2014-09-28 05:04:41 UTC $
*/
#include "net_skeleton.h"
#ifndef NS_MALLOC
#define NS_MALLOC malloc
#endif
#ifndef NS_REALLOC
#define NS_REALLOC realloc
#endif
#ifndef NS_FREE
#define NS_FREE free
#endif
#define NS_UDP_RECEIVE_BUFFER_SIZE 2000
#define NS_VPRINTF_BUFFER_SIZE 500
struct ctl_msg {
ns_event_handler_t callback;
char message[1024 * 8];
};
void iobuf_resize(struct iobuf *io, size_t new_size) {
char *p;
if ((new_size > io->size || (new_size < io->size && new_size >= io->len)) &&
(p = (char *) NS_REALLOC(io->buf, new_size)) != NULL) {
io->size = new_size;
io->buf = p;
}
}
void iobuf_init(struct iobuf *iobuf, size_t initial_size) {
iobuf->len = iobuf->size = 0;
iobuf->buf = NULL;
iobuf_resize(iobuf, initial_size);
}
void iobuf_free(struct iobuf *iobuf) {
if (iobuf != NULL) {
NS_FREE(iobuf->buf);
iobuf_init(iobuf, 0);
}
}
size_t iobuf_append(struct iobuf *io, const void *buf, size_t len) {
char *p = NULL;
assert(io != NULL);
assert(io->len <= io->size);
if (len <= 0) {
} else if (io->len + len <= io->size) {
memcpy(io->buf + io->len, buf, len);
io->len += len;
} else if ((p = (char *) NS_REALLOC(io->buf, io->len + len)) != NULL) {
io->buf = p;
memcpy(io->buf + io->len, buf, len);
io->len += len;
io->size = io->len;
} else {
len = 0;
}
return len;
}
void iobuf_remove(struct iobuf *io, size_t n) {
if (n > 0 && n <= io->len) {
memmove(io->buf, io->buf + n, io->len - n);
io->len -= n;
}
}
static size_t ns_out(struct ns_connection *nc, const void *buf, size_t len) {
if (nc->flags & NSF_UDP) {
long n = sendto(nc->sock, buf, len, 0, &nc->sa.sa, sizeof(nc->sa.sin));
DBG(("%p %d send %ld (%d %s)", nc, nc->sock, n, errno, strerror(errno)));
return n < 0 ? 0 : n;
} else {
return iobuf_append(&nc->send_iobuf, buf, len);
}
}
#ifndef NS_DISABLE_THREADS
void *ns_start_thread(void *(*f)(void *), void *p) {
#ifdef _WIN32
return (void *) _beginthread((void (__cdecl *)(void *)) f, 0, p);
#else
pthread_t thread_id = (pthread_t) 0;
pthread_attr_t attr;
(void) pthread_attr_init(&attr);
(void) pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
#if defined(NS_STACK_SIZE) && NS_STACK_SIZE > 1
(void) pthread_attr_setstacksize(&attr, NS_STACK_SIZE);
#endif
pthread_create(&thread_id, &attr, f, p);
pthread_attr_destroy(&attr);
return (void *) thread_id;
#endif
}
#endif /* NS_DISABLE_THREADS */
static void ns_add_conn(struct ns_mgr *mgr, struct ns_connection *c) {
c->next = mgr->active_connections;
mgr->active_connections = c;
c->prev = NULL;
if (c->next != NULL) c->next->prev = c;
}
static void ns_remove_conn(struct ns_connection *conn) {
if (conn->prev == NULL) conn->mgr->active_connections = conn->next;
if (conn->prev) conn->prev->next = conn->next;
if (conn->next) conn->next->prev = conn->prev;
}
/* Print message to buffer. If buffer is large enough to hold the message,
* return buffer. If buffer is to small, allocate large enough buffer on heap,
* and return allocated buffer. */
int ns_avprintf(char **buf, size_t size, const char *fmt, va_list ap) {
va_list ap_copy;
int len;
va_copy(ap_copy, ap);
len = vsnprintf(*buf, size, fmt, ap_copy);
va_end(ap_copy);
if (len < 0) {
/* eCos and Windows are not standard-compliant and return -1 when
* the buffer is too small. Keep allocating larger buffers until we
* succeed or out of memory. */
*buf = NULL;
while (len < 0) {
NS_FREE(*buf);
size *= 2;
if ((*buf = (char *) NS_MALLOC(size)) == NULL) break;
va_copy(ap_copy, ap);
len = vsnprintf(*buf, size, fmt, ap_copy);
va_end(ap_copy);
}
} else if (len > (int) size) {
/* Standard-compliant code path. Allocate a buffer that is large enough. */
if ((*buf = (char *) NS_MALLOC(len + 1)) == NULL) {
len = -1;
} else {
va_copy(ap_copy, ap);
len = vsnprintf(*buf, len + 1, fmt, ap_copy);
va_end(ap_copy);
}
}
return len;
}
int ns_vprintf(struct ns_connection *nc, const char *fmt, va_list ap) {
char mem[NS_VPRINTF_BUFFER_SIZE], *buf = mem;
int len;
if ((len = ns_avprintf(&buf, sizeof(mem), fmt, ap)) > 0) {
ns_out(nc, buf, len);
}
if (buf != mem && buf != NULL) {
NS_FREE(buf);
}
return len;
}
int ns_printf(struct ns_connection *conn, const char *fmt, ...) {
int len;
va_list ap;
va_start(ap, fmt);
len = ns_vprintf(conn, fmt, ap);
va_end(ap);
return len;
}
static void hexdump(struct ns_connection *nc, const char *path,
int num_bytes, int ev) {
const struct iobuf *io = ev == NS_SEND ? &nc->send_iobuf : &nc->recv_iobuf;
FILE *fp;
char *buf, src[60], dst[60];
int buf_size = num_bytes * 5 + 100;
if ((fp = fopen(path, "a")) != NULL) {
ns_sock_to_str(nc->sock, src, sizeof(src), 3);
ns_sock_to_str(nc->sock, dst, sizeof(dst), 7);
fprintf(fp, "%lu %p %s %s %s %d\n", (unsigned long) time(NULL),
nc->user_data, src,
ev == NS_RECV ? "<-" : ev == NS_SEND ? "->" :
ev == NS_ACCEPT ? "<A" : ev == NS_CONNECT ? "C>" : "XX",
dst, num_bytes);
if (num_bytes > 0 && (buf = (char *) NS_MALLOC(buf_size)) != NULL) {
ns_hexdump(io->buf + (ev == NS_SEND ? 0 : io->len) -
(ev == NS_SEND ? 0 : num_bytes), num_bytes, buf, buf_size);
fprintf(fp, "%s", buf);
NS_FREE(buf);
}
fclose(fp);
}
}
static void ns_call(struct ns_connection *nc, int ev, void *ev_data) {
if (nc->mgr->hexdump_file != NULL && ev != NS_POLL) {
int len = (ev == NS_RECV || ev == NS_SEND) ? * (int *) ev_data : 0;
hexdump(nc, nc->mgr->hexdump_file, len, ev);
}
/*
* If protocol handler is specified, call it. Otherwise, call user-specified
* event handler.
*/
(nc->proto_handler ? nc->proto_handler : nc->handler)(nc, ev, ev_data);
}
static void ns_destroy_conn(struct ns_connection *conn) {
closesocket(conn->sock);
iobuf_free(&conn->recv_iobuf);
iobuf_free(&conn->send_iobuf);
#ifdef NS_ENABLE_SSL
if (conn->ssl != NULL) {
SSL_free(conn->ssl);
}
if (conn->ssl_ctx != NULL) {
SSL_CTX_free(conn->ssl_ctx);
}
#endif
NS_FREE(conn);
}
static void ns_close_conn(struct ns_connection *conn) {
DBG(("%p %d", conn, conn->flags));
ns_call(conn, NS_CLOSE, NULL);
ns_remove_conn(conn);
ns_destroy_conn(conn);
}
void ns_set_close_on_exec(sock_t sock) {
#ifdef _WIN32
(void) SetHandleInformation((HANDLE) sock, HANDLE_FLAG_INHERIT, 0);
#else
fcntl(sock, F_SETFD, FD_CLOEXEC);
#endif
}
static void ns_set_non_blocking_mode(sock_t sock) {
#ifdef _WIN32
unsigned long on = 1;
ioctlsocket(sock, FIONBIO, &on);
#else
int flags = fcntl(sock, F_GETFL, 0);
fcntl(sock, F_SETFL, flags | O_NONBLOCK);
#endif
}
#ifndef NS_DISABLE_SOCKETPAIR
int ns_socketpair2(sock_t sp[2], int sock_type) {
union socket_address sa;
sock_t sock;
socklen_t len = sizeof(sa.sin);
int ret = 0;
sock = sp[0] = sp[1] = INVALID_SOCKET;
(void) memset(&sa, 0, sizeof(sa));
sa.sin.sin_family = AF_INET;
sa.sin.sin_port = htons(0);
sa.sin.sin_addr.s_addr = htonl(0x7f000001);
if ((sock = socket(AF_INET, sock_type, 0)) == INVALID_SOCKET) {
} else if (bind(sock, &sa.sa, len) != 0) {
} else if (sock_type == SOCK_STREAM && listen(sock, 1) != 0) {
} else if (getsockname(sock, &sa.sa, &len) != 0) {
} else if ((sp[0] = socket(AF_INET, sock_type, 0)) == INVALID_SOCKET) {
} else if (connect(sp[0], &sa.sa, len) != 0) {
} else if (sock_type == SOCK_DGRAM &&
(getsockname(sp[0], &sa.sa, &len) != 0 ||
connect(sock, &sa.sa, len) != 0)) {
} else if ((sp[1] = (sock_type == SOCK_DGRAM ? sock :
accept(sock, &sa.sa, &len))) == INVALID_SOCKET) {
} else {
ns_set_close_on_exec(sp[0]);
ns_set_close_on_exec(sp[1]);
if (sock_type == SOCK_STREAM) closesocket(sock);
ret = 1;
}
if (!ret) {
if (sp[0] != INVALID_SOCKET) closesocket(sp[0]);
if (sp[1] != INVALID_SOCKET) closesocket(sp[1]);
if (sock != INVALID_SOCKET) closesocket(sock);
sock = sp[0] = sp[1] = INVALID_SOCKET;
}
return ret;
}
int ns_socketpair(sock_t sp[2]) {
return ns_socketpair2(sp, SOCK_STREAM);
}
#endif /* NS_DISABLE_SOCKETPAIR */
/* TODO(lsm): use non-blocking resolver */
static int ns_resolve2(const char *host, struct in_addr *ina) {
struct hostent *he;
if ((he = gethostbyname(host)) == NULL) {
DBG(("gethostbyname(%s) failed: %s", host, strerror(errno)));
} else {
memcpy(ina, he->h_addr_list[0], sizeof(*ina));
return 1;
}
return 0;
}
/* Resolve FDQN "host", store IP address in the "ip".
* Return > 0 (IP address length) on success. */
int ns_resolve(const char *host, char *buf, size_t n) {
struct in_addr ad;
return ns_resolve2(host, &ad) ? snprintf(buf, n, "%s", inet_ntoa(ad)) : 0;
}
/* Address format: [PROTO://][IP_ADDRESS:]PORT[:CERT][:CA_CERT] */
static int ns_parse_address(const char *str, union socket_address *sa, int *p) {
unsigned int a, b, c, d, port = 0;
int len = 0;
char host[200];
#ifdef NS_ENABLE_IPV6
char buf[100];
#endif
/* MacOS needs that. If we do not zero it, subsequent bind() will fail. */
/* Also, all-zeroes in the socket address means binding to all addresses */
/* for both IPv4 and IPv6 (INADDR_ANY and IN6ADDR_ANY_INIT). */
memset(sa, 0, sizeof(*sa));
sa->sin.sin_family = AF_INET;
*p = SOCK_STREAM;
if (memcmp(str, "udp://", 6) == 0) {
str += 6;
*p = SOCK_DGRAM;
} else if (memcmp(str, "tcp://", 6) == 0) {
str += 6;
}
if (sscanf(str, "%u.%u.%u.%u:%u%n", &a, &b, &c, &d, &port, &len) == 5) {
/* Bind to a specific IPv4 address, e.g. 192.168.1.5:8080 */
sa->sin.sin_addr.s_addr = htonl((a << 24) | (b << 16) | (c << 8) | d);
sa->sin.sin_port = htons((uint16_t) port);
#ifdef NS_ENABLE_IPV6
} else if (sscanf(str, "[%99[^]]]:%u%n", buf, &port, &len) == 2 &&
inet_pton(AF_INET6, buf, &sa->sin6.sin6_addr)) {
/* IPv6 address, e.g. [3ffe:2a00:100:7031::1]:8080 */
sa->sin6.sin6_family = AF_INET6;
sa->sin6.sin6_port = htons((uint16_t) port);
#endif
} else if (sscanf(str, "%199[^ :]:%u%n", host, &port, &len) == 2) {
sa->sin.sin_port = htons((uint16_t) port);
ns_resolve2(host, &sa->sin.sin_addr);
} else if (sscanf(str, "%u%n", &port, &len) == 1) {
/* If only port is specified, bind to IPv4, INADDR_ANY */
sa->sin.sin_port = htons((uint16_t) port);
}
return port < 0xffff && str[len] == '\0' ? len : 0;
}
/* 'sa' must be an initialized address to bind to */
static sock_t ns_open_listening_socket(union socket_address *sa, int proto) {
socklen_t sa_len = (sa->sa.sa_family == AF_INET) ?
sizeof(sa->sin) : sizeof(sa->sin6);
sock_t sock = INVALID_SOCKET;
int on = 1;
if ((sock = socket(sa->sa.sa_family, proto, 0)) != INVALID_SOCKET &&
#if defined(_WIN32) && defined(SO_EXCLUSIVEADDRUSE)
/* http://msdn.microsoft.com/en-us/library/windows/desktop/ms740621(v=vs.85).aspx */
!setsockopt(sock, SOL_SOCKET, SO_EXCLUSIVEADDRUSE,
(void *) &on, sizeof(on)) &&
#endif
#if 1 || !defined(_WIN32) || defined(SO_EXCLUSIVEADDRUSE)
/*
* SO_RESUSEADDR is not enabled on Windows because the semantics of
* SO_REUSEADDR on UNIX and Windows is different. On Windows,
* SO_REUSEADDR allows to bind a socket to a port without error even if
* the port is already open by another program. This is not the behavior
* SO_REUSEADDR was designed for, and leads to hard-to-track failure
* scenarios. Therefore, SO_REUSEADDR was disabled on Windows unless
* SO_EXCLUSIVEADDRUSE is supported and set on a socket.
*/
!setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, (void *) &on, sizeof(on)) &&
#endif
!bind(sock, &sa->sa, sa_len) &&
(proto == SOCK_DGRAM || listen(sock, SOMAXCONN) == 0)) {
ns_set_non_blocking_mode(sock);
/* In case port was set to 0, get the real port number */
(void) getsockname(sock, &sa->sa, &sa_len);
} else if (sock != INVALID_SOCKET) {
closesocket(sock);
sock = INVALID_SOCKET;
}
return sock;
}
#ifdef NS_ENABLE_SSL
/* Certificate generation script is at */
/* https://github.com/cesanta/net_skeleton/blob/master/scripts/gen_certs.sh */
static int ns_use_ca_cert(SSL_CTX *ctx, const char *cert) {
if (ctx == NULL) {
return -1;
} else if (cert == NULL || cert[0] == '\0') {
return 0;
}
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, 0);
return SSL_CTX_load_verify_locations(ctx, cert, NULL) == 1 ? 0 : -2;
}
static int ns_use_cert(SSL_CTX *ctx, const char *pem_file) {
if (ctx == NULL) {
return -1;
} else if (pem_file == NULL || pem_file[0] == '\0') {
return 0;
} else if (SSL_CTX_use_certificate_file(ctx, pem_file, 1) == 0 ||
SSL_CTX_use_PrivateKey_file(ctx, pem_file, 1) == 0) {
return -2;
} else {
SSL_CTX_set_mode(ctx, SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
SSL_CTX_use_certificate_chain_file(ctx, pem_file);
return 0;
}
}
const char *ns_set_ssl(struct ns_connection *nc, const char *cert,
const char *ca_cert) {
const char *result = NULL;
if ((nc->flags & NSF_LISTENING) &&
(nc->ssl_ctx = SSL_CTX_new(SSLv23_server_method())) == NULL) {
result = "SSL_CTX_new() failed";
} else if (!(nc->flags & NSF_LISTENING) &&
(nc->ssl_ctx = SSL_CTX_new(SSLv23_client_method())) == NULL) {
result = "SSL_CTX_new() failed";
} else if (ns_use_cert(nc->ssl_ctx, cert) != 0) {
result = "Invalid ssl cert";
} else if (ns_use_ca_cert(nc->ssl_ctx, ca_cert) != 0) {
result = "Invalid CA cert";
} else if (!(nc->flags & NSF_LISTENING) &&
(nc->ssl = SSL_new(nc->ssl_ctx)) == NULL) {
result = "SSL_new() failed";
} else if (!(nc->flags & NSF_LISTENING)) {
SSL_set_fd(nc->ssl, nc->sock);
}
return result;
}
static int ns_ssl_err(struct ns_connection *conn, int res) {
int ssl_err = SSL_get_error(conn->ssl, res);
if (ssl_err == SSL_ERROR_WANT_READ) conn->flags |= NSF_WANT_READ;
if (ssl_err == SSL_ERROR_WANT_WRITE) conn->flags |= NSF_WANT_WRITE;
return ssl_err;
}
#endif /* NS_ENABLE_SSL */
struct ns_connection *ns_bind(struct ns_mgr *srv, const char *str,
ns_event_handler_t callback) {
union socket_address sa;
struct ns_connection *nc = NULL;
int proto;
sock_t sock;
ns_parse_address(str, &sa, &proto);
if ((sock = ns_open_listening_socket(&sa, proto)) == INVALID_SOCKET) {
DBG(("Failed to open listener: %d", errno));
} else if ((nc = ns_add_sock(srv, sock, callback)) == NULL) {
DBG(("Failed to ns_add_sock"));
closesocket(sock);
} else {
nc->sa = sa;
nc->flags |= NSF_LISTENING;
nc->handler = callback;
if (proto == SOCK_DGRAM) {
nc->flags |= NSF_UDP;
}
DBG(("%p sock %d/%d", nc, sock, proto));
}
return nc;
}
static struct ns_connection *accept_conn(struct ns_connection *ls) {
struct ns_connection *c = NULL;
union socket_address sa;
socklen_t len = sizeof(sa);
sock_t sock = INVALID_SOCKET;
/* NOTE(lsm): on Windows, sock is always > FD_SETSIZE */
if ((sock = accept(ls->sock, &sa.sa, &len)) == INVALID_SOCKET) {
} else if ((c = ns_add_sock(ls->mgr, sock, ls->handler)) == NULL) {
closesocket(sock);
#ifdef NS_ENABLE_SSL
} else if (ls->ssl_ctx != NULL &&
((c->ssl = SSL_new(ls->ssl_ctx)) == NULL ||
SSL_set_fd(c->ssl, sock) != 1)) {
DBG(("SSL error"));
ns_close_conn(c);
c = NULL;
#endif
} else {
c->listener = ls;
c->proto_data = ls->proto_data;
c->proto_handler = ls->proto_handler;
c->user_data = ls->user_data;
ns_call(c, NS_ACCEPT, &sa);
DBG(("%p %d %p %p", c, c->sock, c->ssl_ctx, c->ssl));
}
return c;
}
static int ns_is_error(int n) {
return n == 0 ||
(n < 0 && errno != EINTR && errno != EINPROGRESS &&
errno != EAGAIN && errno != EWOULDBLOCK
#ifdef _WIN32
&& WSAGetLastError() != WSAEINTR && WSAGetLastError() != WSAEWOULDBLOCK
#endif
);
}
void ns_sock_to_str(sock_t sock, char *buf, size_t len, int flags) {
union socket_address sa;
socklen_t slen = sizeof(sa);
if (buf != NULL && len > 0) {
buf[0] = '\0';
memset(&sa, 0, sizeof(sa));
if (flags & 4) {
getpeername(sock, &sa.sa, &slen);
} else {
getsockname(sock, &sa.sa, &slen);
}
if (flags & 1) {
#if defined(NS_ENABLE_IPV6)
inet_ntop(sa.sa.sa_family, sa.sa.sa_family == AF_INET ?
(void *) &sa.sin.sin_addr :
(void *) &sa.sin6.sin6_addr, buf, len);
#elif defined(_WIN32)
/* Only Windoze Vista (and newer) have inet_ntop() */
strncpy(buf, inet_ntoa(sa.sin.sin_addr), len);
#else
inet_ntop(sa.sa.sa_family, (void *) &sa.sin.sin_addr, buf,(socklen_t)len);
#endif
}
if (flags & 2) {
snprintf(buf + strlen(buf), len - (strlen(buf) + 1), "%s%d",
flags & 1 ? ":" : "", (int) ntohs(sa.sin.sin_port));
}
}
}
int ns_hexdump(const void *buf, int len, char *dst, int dst_len) {
const unsigned char *p = (const unsigned char *) buf;
char ascii[17] = "";
int i, idx, n = 0;
for (i = 0; i < len; i++) {
idx = i % 16;
if (idx == 0) {
if (i > 0) n += snprintf(dst + n, dst_len - n, " %s\n", ascii);
n += snprintf(dst + n, dst_len - n, "%04x ", i);
}
n += snprintf(dst + n, dst_len - n, " %02x", p[i]);
ascii[idx] = p[i] < 0x20 || p[i] > 0x7e ? '.' : p[i];
ascii[idx + 1] = '\0';
}
while (i++ % 16) n += snprintf(dst + n, dst_len - n, "%s", " ");
n += snprintf(dst + n, dst_len - n, " %s\n\n", ascii);
return n;
}
static void ns_read_from_socket(struct ns_connection *conn) {
char buf[2048];
int n = 0;
if (conn->flags & NSF_CONNECTING) {
int ok = 1, ret;
socklen_t len = sizeof(ok);
ret = getsockopt(conn->sock, SOL_SOCKET, SO_ERROR, (char *) &ok, &len);
#ifdef NS_ENABLE_SSL
if (ret == 0 && ok == 0 && conn->ssl != NULL) {
int res = SSL_connect(conn->ssl);
int ssl_err = ns_ssl_err(conn, res);
if (res == 1) {
conn->flags |= NSF_SSL_HANDSHAKE_DONE;
} else if (ssl_err == SSL_ERROR_WANT_READ ||
ssl_err == SSL_ERROR_WANT_WRITE) {
return; /* Call us again */
} else {
ok = 1;
}
}
#endif
conn->flags &= ~NSF_CONNECTING;
DBG(("%p ok=%d", conn, ok));
if (ok != 0) {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
}
ns_call(conn, NS_CONNECT, &ok);
return;
}
#ifdef NS_ENABLE_SSL
if (conn->ssl != NULL) {
if (conn->flags & NSF_SSL_HANDSHAKE_DONE) {
/* SSL library may have more bytes ready to read then we ask to read.
* Therefore, read in a loop until we read everything. Without the loop,
* we skip to the next select() cycle which can just timeout. */
while ((n = SSL_read(conn->ssl, buf, sizeof(buf))) > 0) {
DBG(("%p %d <- %d bytes (SSL)", conn, conn->flags, n));
iobuf_append(&conn->recv_iobuf, buf, n);
ns_call(conn, NS_RECV, &n);
}
ns_ssl_err(conn, n);
} else {
int res = SSL_accept(conn->ssl);
int ssl_err = ns_ssl_err(conn, res);
if (res == 1) {
conn->flags |= NSF_SSL_HANDSHAKE_DONE;
} else if (ssl_err == SSL_ERROR_WANT_READ ||
ssl_err == SSL_ERROR_WANT_WRITE) {
return; /* Call us again */
} else {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
}
return;
}
} else
#endif
{
while ((n = (int) recv(conn->sock, buf, sizeof(buf), 0)) > 0) {
DBG(("%p %d <- %d bytes (PLAIN)", conn, conn->flags, n));
iobuf_append(&conn->recv_iobuf, buf, n);
ns_call(conn, NS_RECV, &n);
}
}
if (ns_is_error(n)) {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
}
}
static void ns_write_to_socket(struct ns_connection *conn) {
struct iobuf *io = &conn->send_iobuf;
int n = 0;
#ifdef NS_ENABLE_SSL
if (conn->ssl != NULL) {
n = SSL_write(conn->ssl, io->buf, io->len);
if (n <= 0) {
int ssl_err = ns_ssl_err(conn, n);
if (ssl_err == SSL_ERROR_WANT_READ || ssl_err == SSL_ERROR_WANT_WRITE) {
return; /* Call us again */
} else {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
}
}
} else
#endif
{ n = (int) send(conn->sock, io->buf, io->len, 0); }
DBG(("%p %d -> %d bytes", conn, conn->flags, n));
ns_call(conn, NS_SEND, &n);
if (ns_is_error(n)) {
conn->flags |= NSF_CLOSE_IMMEDIATELY;
} else if (n > 0) {
iobuf_remove(io, n);
}
}
int ns_send(struct ns_connection *conn, const void *buf, int len) {
return (int) ns_out(conn, buf, len);
}
static void ns_handle_udp(struct ns_connection *ls) {
struct ns_connection nc;
char buf[NS_UDP_RECEIVE_BUFFER_SIZE];
int n;
socklen_t s_len = sizeof(nc.sa);
memset(&nc, 0, sizeof(nc));
n = recvfrom(ls->sock, buf, sizeof(buf), 0, &nc.sa.sa, &s_len);
if (n <= 0) {
DBG(("%p recvfrom: %s", ls, strerror(errno)));
} else {
nc.mgr = ls->mgr;
nc.recv_iobuf.buf = buf;
nc.recv_iobuf.len = nc.recv_iobuf.size = n;
nc.sock = ls->sock;
nc.handler = ls->handler;
nc.user_data = ls->user_data;
nc.proto_data = ls->proto_data;
nc.proto_handler = ls->proto_handler;
nc.mgr = ls->mgr;
nc.listener = ls;
nc.flags = NSF_UDP;
DBG(("%p %d bytes received", ls, n));
ns_call(&nc, NS_RECV, &n);
}
}
static void ns_add_to_set(sock_t sock, fd_set *set, sock_t *max_fd) {
if (sock != INVALID_SOCKET) {
FD_SET(sock, set);
if (*max_fd == INVALID_SOCKET || sock > *max_fd) {
*max_fd = sock;
}
}
}
time_t ns_mgr_poll(struct ns_mgr *mgr, int milli) {
struct ns_connection *nc, *tmp;
struct timeval tv;
fd_set read_set, write_set, err_set;
sock_t max_fd = INVALID_SOCKET;
time_t current_time = time(NULL);
FD_ZERO(&read_set);
FD_ZERO(&write_set);
FD_ZERO(&err_set);
ns_add_to_set(mgr->ctl[1], &read_set, &max_fd);
for (nc = mgr->active_connections; nc != NULL; nc = tmp) {
tmp = nc->next;
if (!(nc->flags & (NSF_LISTENING | NSF_CONNECTING))) {
ns_call(nc, NS_POLL, &current_time);
}
if (!(nc->flags & NSF_WANT_WRITE)) {
/*DBG(("%p read_set", nc)); */
ns_add_to_set(nc->sock, &read_set, &max_fd);
}
if (((nc->flags & NSF_CONNECTING) && !(nc->flags & NSF_WANT_READ)) ||
(nc->send_iobuf.len > 0 && !(nc->flags & NSF_CONNECTING) &&
!(nc->flags & NSF_BUFFER_BUT_DONT_SEND))) {
/*DBG(("%p write_set", nc)); */
ns_add_to_set(nc->sock, &write_set, &max_fd);
ns_add_to_set(nc->sock, &err_set, &max_fd);
}
if (nc->flags & NSF_CLOSE_IMMEDIATELY) {
ns_close_conn(nc);
}
}
tv.tv_sec = milli / 1000;
tv.tv_usec = (milli % 1000) * 1000;
if (select((int) max_fd + 1, &read_set, &write_set, &err_set, &tv) > 0) {
/* select() might have been waiting for a long time, reset current_time
* now to prevent last_io_time being set to the past. */
current_time = time(NULL);
/* Read wakeup messages */
if (mgr->ctl[1] != INVALID_SOCKET &&
FD_ISSET(mgr->ctl[1], &read_set)) {
struct ctl_msg ctl_msg;
int len = (int) recv(mgr->ctl[1], (char *) &ctl_msg, sizeof(ctl_msg), 0);
send(mgr->ctl[1], ctl_msg.message, 1, 0);
if (len >= (int) sizeof(ctl_msg.callback) && ctl_msg.callback != NULL) {
struct ns_connection *c;
for (c = ns_next(mgr, NULL); c != NULL; c = ns_next(mgr, c)) {
ctl_msg.callback(c, NS_POLL, ctl_msg.message);
}
}
}
for (nc = mgr->active_connections; nc != NULL; nc = tmp) {
tmp = nc->next;
/* Windows reports failed connect() requests in err_set */
if (FD_ISSET(nc->sock, &err_set) && (nc->flags & NSF_CONNECTING)) {
nc->last_io_time = current_time;
ns_read_from_socket(nc);
}
if (FD_ISSET(nc->sock, &read_set)) {
nc->last_io_time = current_time;
if (nc->flags & NSF_LISTENING) {
if (nc->flags & NSF_UDP) {
ns_handle_udp(nc);
} else {
/* We're not looping here, and accepting just one connection at
* a time. The reason is that eCos does not respect non-blocking
* flag on a listening socket and hangs in a loop. */
accept_conn(nc);
}
} else {
ns_read_from_socket(nc);
}
}
if (FD_ISSET(nc->sock, &write_set)) {
nc->last_io_time = current_time;
if (nc->flags & NSF_CONNECTING) {
ns_read_from_socket(nc);
} else if (!(nc->flags & NSF_BUFFER_BUT_DONT_SEND)) {
ns_write_to_socket(nc);
}
}
}
}
for (nc = mgr->active_connections; nc != NULL; nc = tmp) {
tmp = nc->next;
if ((nc->flags & NSF_CLOSE_IMMEDIATELY) ||
(nc->send_iobuf.len == 0 &&
(nc->flags & NSF_FINISHED_SENDING_DATA))) {
ns_close_conn(nc);
}
}
return current_time;
}
struct ns_connection *ns_connect(struct ns_mgr *mgr, const char *address,
ns_event_handler_t callback) {
sock_t sock = INVALID_SOCKET;
struct ns_connection *nc = NULL;
union socket_address sa;
int rc, proto;
ns_parse_address(address, &sa, &proto);
if ((sock = socket(AF_INET, proto, 0)) == INVALID_SOCKET) {
return NULL;
}
ns_set_non_blocking_mode(sock);
rc = (proto == SOCK_DGRAM) ? 0 : connect(sock, &sa.sa, sizeof(sa.sin));
if (rc != 0 && ns_is_error(rc)) {
closesocket(sock);
return NULL;
} else if ((nc = ns_add_sock(mgr, sock, callback)) == NULL) {
closesocket(sock);
return NULL;
}
nc->sa = sa; /* Important, cause UDP conns will use sendto() */
nc->flags = (proto == SOCK_DGRAM) ? NSF_UDP : NSF_CONNECTING;
return nc;
}
struct ns_connection *ns_add_sock(struct ns_mgr *s, sock_t sock,
ns_event_handler_t callback) {
struct ns_connection *conn;
if ((conn = (struct ns_connection *) NS_MALLOC(sizeof(*conn))) != NULL) {
memset(conn, 0, sizeof(*conn));
ns_set_non_blocking_mode(sock);
ns_set_close_on_exec(sock);
conn->sock = sock;
conn->handler = callback;
conn->mgr = s;
conn->last_io_time = time(NULL);
ns_add_conn(s, conn);
DBG(("%p %d", conn, sock));
}
return conn;
}
struct ns_connection *ns_next(struct ns_mgr *s, struct ns_connection *conn) {
return conn == NULL ? s->active_connections : conn->next;
}
void ns_broadcast(struct ns_mgr *mgr, ns_event_handler_t cb,void *data, size_t len) {
struct ctl_msg ctl_msg;
if (mgr->ctl[0] != INVALID_SOCKET && data != NULL &&
len < sizeof(ctl_msg.message)) {
ctl_msg.callback = cb;
memcpy(ctl_msg.message, data, len);
send(mgr->ctl[0], (char *) &ctl_msg,
offsetof(struct ctl_msg, message) + len, 0);
recv(mgr->ctl[0], (char *) &len, 1, 0);
}
}
void ns_mgr_init(struct ns_mgr *s, void *user_data) {
memset(s, 0, sizeof(*s));
s->ctl[0] = s->ctl[1] = INVALID_SOCKET;
s->user_data = user_data;
#ifdef _WIN32
{ WSADATA data; WSAStartup(MAKEWORD(2, 2), &data); }
#else
/* Ignore SIGPIPE signal, so if client cancels the request, it
* won't kill the whole process. */
signal(SIGPIPE, SIG_IGN);
#endif
#ifndef NS_DISABLE_SOCKETPAIR
do {
ns_socketpair2(s->ctl, SOCK_DGRAM);
} while (s->ctl[0] == INVALID_SOCKET);
#endif
#ifdef NS_ENABLE_SSL
{static int init_done; if (!init_done) { SSL_library_init(); init_done++; }}
#endif
}
void ns_mgr_free(struct ns_mgr *s) {
struct ns_connection *conn, *tmp_conn;
DBG(("%p", s));
if (s == NULL) return;
/* Do one last poll, see https://github.com/cesanta/mongoose/issues/286 */
ns_mgr_poll(s, 0);
if (s->ctl[0] != INVALID_SOCKET) closesocket(s->ctl[0]);
if (s->ctl[1] != INVALID_SOCKET) closesocket(s->ctl[1]);
s->ctl[0] = s->ctl[1] = INVALID_SOCKET;
for (conn = s->active_connections; conn != NULL; conn = tmp_conn) {
tmp_conn = conn->next;
ns_close_conn(conn);
}
}