1503 lines
44 KiB
C
1503 lines
44 KiB
C
/*
|
|
* services/mesh.c - deal with mesh of query states and handle events for that.
|
|
*
|
|
* Copyright (c) 2007, NLnet Labs. All rights reserved.
|
|
*
|
|
* This software is open source.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
* This file contains functions to assist in dealing with a mesh of
|
|
* query states. This mesh is supposed to be thread-specific.
|
|
* It consists of query states (per qname, qtype, qclass) and connections
|
|
* between query states and the super and subquery states, and replies to
|
|
* send back to clients.
|
|
*/
|
|
#include "config.h"
|
|
#include "services/mesh.h"
|
|
#include "services/outbound_list.h"
|
|
#include "services/cache/dns.h"
|
|
#include "util/log.h"
|
|
#include "util/net_help.h"
|
|
#include "util/module.h"
|
|
#include "util/regional.h"
|
|
#include "util/data/msgencode.h"
|
|
#include "util/timehist.h"
|
|
#include "util/fptr_wlist.h"
|
|
#include "util/alloc.h"
|
|
#include "util/config_file.h"
|
|
#include "sldns/sbuffer.h"
|
|
#include "sldns/wire2str.h"
|
|
#include "services/localzone.h"
|
|
#include "util/data/dname.h"
|
|
#include "respip/respip.h"
|
|
|
|
/** subtract timers and the values do not overflow or become negative */
|
|
static void
|
|
timeval_subtract(struct timeval* d, const struct timeval* end, const struct timeval* start)
|
|
{
|
|
#ifndef S_SPLINT_S
|
|
time_t end_usec = end->tv_usec;
|
|
d->tv_sec = end->tv_sec - start->tv_sec;
|
|
if(end_usec < start->tv_usec) {
|
|
end_usec += 1000000;
|
|
d->tv_sec--;
|
|
}
|
|
d->tv_usec = end_usec - start->tv_usec;
|
|
#endif
|
|
}
|
|
|
|
/** add timers and the values do not overflow or become negative */
|
|
static void
|
|
timeval_add(struct timeval* d, const struct timeval* add)
|
|
{
|
|
#ifndef S_SPLINT_S
|
|
d->tv_sec += add->tv_sec;
|
|
d->tv_usec += add->tv_usec;
|
|
if(d->tv_usec > 1000000 ) {
|
|
d->tv_usec -= 1000000;
|
|
d->tv_sec++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/** divide sum of timers to get average */
|
|
static void
|
|
timeval_divide(struct timeval* avg, const struct timeval* sum, size_t d)
|
|
{
|
|
#ifndef S_SPLINT_S
|
|
size_t leftover;
|
|
if(d == 0) {
|
|
avg->tv_sec = 0;
|
|
avg->tv_usec = 0;
|
|
return;
|
|
}
|
|
avg->tv_sec = sum->tv_sec / d;
|
|
avg->tv_usec = sum->tv_usec / d;
|
|
/* handle fraction from seconds divide */
|
|
leftover = sum->tv_sec - avg->tv_sec*d;
|
|
avg->tv_usec += (leftover*1000000)/d;
|
|
#endif
|
|
}
|
|
|
|
/** histogram compare of time values */
|
|
static int
|
|
timeval_smaller(const struct timeval* x, const struct timeval* y)
|
|
{
|
|
#ifndef S_SPLINT_S
|
|
if(x->tv_sec < y->tv_sec)
|
|
return 1;
|
|
else if(x->tv_sec == y->tv_sec) {
|
|
if(x->tv_usec <= y->tv_usec)
|
|
return 1;
|
|
else return 0;
|
|
}
|
|
else return 0;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Compare two response-ip client info entries for the purpose of mesh state
|
|
* compare. It returns 0 if ci_a and ci_b are considered equal; otherwise
|
|
* 1 or -1 (they mean 'ci_a is larger/smaller than ci_b', respectively, but
|
|
* in practice it should be only used to mean they are different).
|
|
* We cannot share the mesh state for two queries if different response-ip
|
|
* actions can apply in the end, even if those queries are otherwise identical.
|
|
* For this purpose we compare tag lists and tag action lists; they should be
|
|
* identical to share the same state.
|
|
* For tag data, we don't look into the data content, as it can be
|
|
* expensive; unless tag data are not defined for both or they point to the
|
|
* exact same data in memory (i.e., they come from the same ACL entry), we
|
|
* consider these data different.
|
|
* Likewise, if the client info is associated with views, we don't look into
|
|
* the views. They are considered different unless they are exactly the same
|
|
* even if the views only differ in the names.
|
|
*/
|
|
static int
|
|
client_info_compare(const struct respip_client_info* ci_a,
|
|
const struct respip_client_info* ci_b)
|
|
{
|
|
int cmp;
|
|
|
|
if(!ci_a && !ci_b)
|
|
return 0;
|
|
if(ci_a && !ci_b)
|
|
return -1;
|
|
if(!ci_a && ci_b)
|
|
return 1;
|
|
if(ci_a->taglen != ci_b->taglen)
|
|
return (ci_a->taglen < ci_b->taglen) ? -1 : 1;
|
|
cmp = memcmp(ci_a->taglist, ci_b->taglist, ci_a->taglen);
|
|
if(cmp != 0)
|
|
return cmp;
|
|
if(ci_a->tag_actions_size != ci_b->tag_actions_size)
|
|
return (ci_a->tag_actions_size < ci_b->tag_actions_size) ?
|
|
-1 : 1;
|
|
cmp = memcmp(ci_a->tag_actions, ci_b->tag_actions,
|
|
ci_a->tag_actions_size);
|
|
if(cmp != 0)
|
|
return cmp;
|
|
if(ci_a->tag_datas != ci_b->tag_datas)
|
|
return ci_a->tag_datas < ci_b->tag_datas ? -1 : 1;
|
|
if(ci_a->view != ci_b->view)
|
|
return ci_a->view < ci_b->view ? -1 : 1;
|
|
/* For the unbound daemon these should be non-NULL and identical,
|
|
* but we check that just in case. */
|
|
if(ci_a->respip_set != ci_b->respip_set)
|
|
return ci_a->respip_set < ci_b->respip_set ? -1 : 1;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
mesh_state_compare(const void* ap, const void* bp)
|
|
{
|
|
struct mesh_state* a = (struct mesh_state*)ap;
|
|
struct mesh_state* b = (struct mesh_state*)bp;
|
|
int cmp;
|
|
|
|
if(a->unique < b->unique)
|
|
return -1;
|
|
if(a->unique > b->unique)
|
|
return 1;
|
|
|
|
if(a->s.is_priming && !b->s.is_priming)
|
|
return -1;
|
|
if(!a->s.is_priming && b->s.is_priming)
|
|
return 1;
|
|
|
|
if(a->s.is_valrec && !b->s.is_valrec)
|
|
return -1;
|
|
if(!a->s.is_valrec && b->s.is_valrec)
|
|
return 1;
|
|
|
|
if((a->s.query_flags&BIT_RD) && !(b->s.query_flags&BIT_RD))
|
|
return -1;
|
|
if(!(a->s.query_flags&BIT_RD) && (b->s.query_flags&BIT_RD))
|
|
return 1;
|
|
|
|
if((a->s.query_flags&BIT_CD) && !(b->s.query_flags&BIT_CD))
|
|
return -1;
|
|
if(!(a->s.query_flags&BIT_CD) && (b->s.query_flags&BIT_CD))
|
|
return 1;
|
|
|
|
cmp = query_info_compare(&a->s.qinfo, &b->s.qinfo);
|
|
if(cmp != 0)
|
|
return cmp;
|
|
return client_info_compare(a->s.client_info, b->s.client_info);
|
|
}
|
|
|
|
int
|
|
mesh_state_ref_compare(const void* ap, const void* bp)
|
|
{
|
|
struct mesh_state_ref* a = (struct mesh_state_ref*)ap;
|
|
struct mesh_state_ref* b = (struct mesh_state_ref*)bp;
|
|
return mesh_state_compare(a->s, b->s);
|
|
}
|
|
|
|
struct mesh_area*
|
|
mesh_create(struct module_stack* stack, struct module_env* env)
|
|
{
|
|
struct mesh_area* mesh = calloc(1, sizeof(struct mesh_area));
|
|
if(!mesh) {
|
|
log_err("mesh area alloc: out of memory");
|
|
return NULL;
|
|
}
|
|
mesh->histogram = timehist_setup();
|
|
mesh->qbuf_bak = sldns_buffer_new(env->cfg->msg_buffer_size);
|
|
if(!mesh->histogram || !mesh->qbuf_bak) {
|
|
free(mesh);
|
|
log_err("mesh area alloc: out of memory");
|
|
return NULL;
|
|
}
|
|
mesh->mods = *stack;
|
|
mesh->env = env;
|
|
rbtree_init(&mesh->run, &mesh_state_compare);
|
|
rbtree_init(&mesh->all, &mesh_state_compare);
|
|
mesh->num_reply_addrs = 0;
|
|
mesh->num_reply_states = 0;
|
|
mesh->num_detached_states = 0;
|
|
mesh->num_forever_states = 0;
|
|
mesh->stats_jostled = 0;
|
|
mesh->stats_dropped = 0;
|
|
mesh->max_reply_states = env->cfg->num_queries_per_thread;
|
|
mesh->max_forever_states = (mesh->max_reply_states+1)/2;
|
|
#ifndef S_SPLINT_S
|
|
mesh->jostle_max.tv_sec = (time_t)(env->cfg->jostle_time / 1000);
|
|
mesh->jostle_max.tv_usec = (time_t)((env->cfg->jostle_time % 1000)
|
|
*1000);
|
|
#endif
|
|
return mesh;
|
|
}
|
|
|
|
/** help mesh delete delete mesh states */
|
|
static void
|
|
mesh_delete_helper(rbnode_type* n)
|
|
{
|
|
struct mesh_state* mstate = (struct mesh_state*)n->key;
|
|
/* perform a full delete, not only 'cleanup' routine,
|
|
* because other callbacks expect a clean state in the mesh.
|
|
* For 're-entrant' calls */
|
|
mesh_state_delete(&mstate->s);
|
|
/* but because these delete the items from the tree, postorder
|
|
* traversal and rbtree rebalancing do not work together */
|
|
}
|
|
|
|
void
|
|
mesh_delete(struct mesh_area* mesh)
|
|
{
|
|
if(!mesh)
|
|
return;
|
|
/* free all query states */
|
|
while(mesh->all.count)
|
|
mesh_delete_helper(mesh->all.root);
|
|
timehist_delete(mesh->histogram);
|
|
sldns_buffer_free(mesh->qbuf_bak);
|
|
free(mesh);
|
|
}
|
|
|
|
void
|
|
mesh_delete_all(struct mesh_area* mesh)
|
|
{
|
|
/* free all query states */
|
|
while(mesh->all.count)
|
|
mesh_delete_helper(mesh->all.root);
|
|
mesh->stats_dropped += mesh->num_reply_addrs;
|
|
/* clear mesh area references */
|
|
rbtree_init(&mesh->run, &mesh_state_compare);
|
|
rbtree_init(&mesh->all, &mesh_state_compare);
|
|
mesh->num_reply_addrs = 0;
|
|
mesh->num_reply_states = 0;
|
|
mesh->num_detached_states = 0;
|
|
mesh->num_forever_states = 0;
|
|
mesh->forever_first = NULL;
|
|
mesh->forever_last = NULL;
|
|
mesh->jostle_first = NULL;
|
|
mesh->jostle_last = NULL;
|
|
}
|
|
|
|
int mesh_make_new_space(struct mesh_area* mesh, sldns_buffer* qbuf)
|
|
{
|
|
struct mesh_state* m = mesh->jostle_first;
|
|
/* free space is available */
|
|
if(mesh->num_reply_states < mesh->max_reply_states)
|
|
return 1;
|
|
/* try to kick out a jostle-list item */
|
|
if(m && m->reply_list && m->list_select == mesh_jostle_list) {
|
|
/* how old is it? */
|
|
struct timeval age;
|
|
timeval_subtract(&age, mesh->env->now_tv,
|
|
&m->reply_list->start_time);
|
|
if(timeval_smaller(&mesh->jostle_max, &age)) {
|
|
/* its a goner */
|
|
log_nametypeclass(VERB_ALGO, "query jostled out to "
|
|
"make space for a new one",
|
|
m->s.qinfo.qname, m->s.qinfo.qtype,
|
|
m->s.qinfo.qclass);
|
|
/* backup the query */
|
|
if(qbuf) sldns_buffer_copy(mesh->qbuf_bak, qbuf);
|
|
/* notify supers */
|
|
if(m->super_set.count > 0) {
|
|
verbose(VERB_ALGO, "notify supers of failure");
|
|
m->s.return_msg = NULL;
|
|
m->s.return_rcode = LDNS_RCODE_SERVFAIL;
|
|
mesh_walk_supers(mesh, m);
|
|
}
|
|
mesh->stats_jostled ++;
|
|
mesh_state_delete(&m->s);
|
|
/* restore the query - note that the qinfo ptr to
|
|
* the querybuffer is then correct again. */
|
|
if(qbuf) sldns_buffer_copy(qbuf, mesh->qbuf_bak);
|
|
return 1;
|
|
}
|
|
}
|
|
/* no space for new item */
|
|
return 0;
|
|
}
|
|
|
|
void mesh_new_client(struct mesh_area* mesh, struct query_info* qinfo,
|
|
struct respip_client_info* cinfo, uint16_t qflags,
|
|
struct edns_data* edns, struct comm_reply* rep, uint16_t qid)
|
|
{
|
|
struct mesh_state* s = NULL;
|
|
int unique = unique_mesh_state(edns->opt_list, mesh->env);
|
|
int was_detached = 0;
|
|
int was_noreply = 0;
|
|
int added = 0;
|
|
if(!unique)
|
|
s = mesh_area_find(mesh, cinfo, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0);
|
|
/* does this create a new reply state? */
|
|
if(!s || s->list_select == mesh_no_list) {
|
|
if(!mesh_make_new_space(mesh, rep->c->buffer)) {
|
|
verbose(VERB_ALGO, "Too many queries. dropping "
|
|
"incoming query.");
|
|
comm_point_drop_reply(rep);
|
|
mesh->stats_dropped ++;
|
|
return;
|
|
}
|
|
/* for this new reply state, the reply address is free,
|
|
* so the limit of reply addresses does not stop reply states*/
|
|
} else {
|
|
/* protect our memory usage from storing reply addresses */
|
|
if(mesh->num_reply_addrs > mesh->max_reply_states*16) {
|
|
verbose(VERB_ALGO, "Too many requests queued. "
|
|
"dropping incoming query.");
|
|
mesh->stats_dropped++;
|
|
comm_point_drop_reply(rep);
|
|
return;
|
|
}
|
|
}
|
|
/* see if it already exists, if not, create one */
|
|
if(!s) {
|
|
#ifdef UNBOUND_DEBUG
|
|
struct rbnode_type* n;
|
|
#endif
|
|
s = mesh_state_create(mesh->env, qinfo, cinfo,
|
|
qflags&(BIT_RD|BIT_CD), 0, 0);
|
|
if(!s) {
|
|
log_err("mesh_state_create: out of memory; SERVFAIL");
|
|
if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL, NULL,
|
|
LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch))
|
|
edns->opt_list = NULL;
|
|
error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL,
|
|
qinfo, qid, qflags, edns);
|
|
comm_point_send_reply(rep);
|
|
return;
|
|
}
|
|
if(unique)
|
|
mesh_state_make_unique(s);
|
|
/* copy the edns options we got from the front */
|
|
if(edns->opt_list) {
|
|
s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list,
|
|
s->s.region);
|
|
if(!s->s.edns_opts_front_in) {
|
|
log_err("mesh_state_create: out of memory; SERVFAIL");
|
|
if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, NULL,
|
|
NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch))
|
|
edns->opt_list = NULL;
|
|
error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL,
|
|
qinfo, qid, qflags, edns);
|
|
comm_point_send_reply(rep);
|
|
return;
|
|
}
|
|
}
|
|
|
|
#ifdef UNBOUND_DEBUG
|
|
n =
|
|
#else
|
|
(void)
|
|
#endif
|
|
rbtree_insert(&mesh->all, &s->node);
|
|
log_assert(n != NULL);
|
|
/* set detached (it is now) */
|
|
mesh->num_detached_states++;
|
|
added = 1;
|
|
}
|
|
if(!s->reply_list && !s->cb_list && s->super_set.count == 0)
|
|
was_detached = 1;
|
|
if(!s->reply_list && !s->cb_list)
|
|
was_noreply = 1;
|
|
/* add reply to s */
|
|
if(!mesh_state_add_reply(s, edns, rep, qid, qflags, qinfo)) {
|
|
log_err("mesh_new_client: out of memory; SERVFAIL");
|
|
if(!inplace_cb_reply_servfail_call(mesh->env, qinfo, &s->s,
|
|
NULL, LDNS_RCODE_SERVFAIL, edns, mesh->env->scratch))
|
|
edns->opt_list = NULL;
|
|
error_encode(rep->c->buffer, LDNS_RCODE_SERVFAIL,
|
|
qinfo, qid, qflags, edns);
|
|
comm_point_send_reply(rep);
|
|
if(added)
|
|
mesh_state_delete(&s->s);
|
|
return;
|
|
}
|
|
/* update statistics */
|
|
if(was_detached) {
|
|
log_assert(mesh->num_detached_states > 0);
|
|
mesh->num_detached_states--;
|
|
}
|
|
if(was_noreply) {
|
|
mesh->num_reply_states ++;
|
|
}
|
|
mesh->num_reply_addrs++;
|
|
if(s->list_select == mesh_no_list) {
|
|
/* move to either the forever or the jostle_list */
|
|
if(mesh->num_forever_states < mesh->max_forever_states) {
|
|
mesh->num_forever_states ++;
|
|
mesh_list_insert(s, &mesh->forever_first,
|
|
&mesh->forever_last);
|
|
s->list_select = mesh_forever_list;
|
|
} else {
|
|
mesh_list_insert(s, &mesh->jostle_first,
|
|
&mesh->jostle_last);
|
|
s->list_select = mesh_jostle_list;
|
|
}
|
|
}
|
|
if(added)
|
|
mesh_run(mesh, s, module_event_new, NULL);
|
|
}
|
|
|
|
int
|
|
mesh_new_callback(struct mesh_area* mesh, struct query_info* qinfo,
|
|
uint16_t qflags, struct edns_data* edns, sldns_buffer* buf,
|
|
uint16_t qid, mesh_cb_func_type cb, void* cb_arg)
|
|
{
|
|
struct mesh_state* s = NULL;
|
|
int unique = unique_mesh_state(edns->opt_list, mesh->env);
|
|
int was_detached = 0;
|
|
int was_noreply = 0;
|
|
int added = 0;
|
|
if(!unique)
|
|
s = mesh_area_find(mesh, NULL, qinfo, qflags&(BIT_RD|BIT_CD), 0, 0);
|
|
|
|
/* there are no limits on the number of callbacks */
|
|
|
|
/* see if it already exists, if not, create one */
|
|
if(!s) {
|
|
#ifdef UNBOUND_DEBUG
|
|
struct rbnode_type* n;
|
|
#endif
|
|
s = mesh_state_create(mesh->env, qinfo, NULL,
|
|
qflags&(BIT_RD|BIT_CD), 0, 0);
|
|
if(!s) {
|
|
return 0;
|
|
}
|
|
if(unique)
|
|
mesh_state_make_unique(s);
|
|
if(edns->opt_list) {
|
|
s->s.edns_opts_front_in = edns_opt_copy_region(edns->opt_list,
|
|
s->s.region);
|
|
if(!s->s.edns_opts_front_in) {
|
|
return 0;
|
|
}
|
|
}
|
|
#ifdef UNBOUND_DEBUG
|
|
n =
|
|
#else
|
|
(void)
|
|
#endif
|
|
rbtree_insert(&mesh->all, &s->node);
|
|
log_assert(n != NULL);
|
|
/* set detached (it is now) */
|
|
mesh->num_detached_states++;
|
|
added = 1;
|
|
}
|
|
if(!s->reply_list && !s->cb_list && s->super_set.count == 0)
|
|
was_detached = 1;
|
|
if(!s->reply_list && !s->cb_list)
|
|
was_noreply = 1;
|
|
/* add reply to s */
|
|
if(!mesh_state_add_cb(s, edns, buf, cb, cb_arg, qid, qflags)) {
|
|
if(added)
|
|
mesh_state_delete(&s->s);
|
|
return 0;
|
|
}
|
|
/* update statistics */
|
|
if(was_detached) {
|
|
log_assert(mesh->num_detached_states > 0);
|
|
mesh->num_detached_states--;
|
|
}
|
|
if(was_noreply) {
|
|
mesh->num_reply_states ++;
|
|
}
|
|
mesh->num_reply_addrs++;
|
|
if(added)
|
|
mesh_run(mesh, s, module_event_new, NULL);
|
|
return 1;
|
|
}
|
|
|
|
void mesh_new_prefetch(struct mesh_area* mesh, struct query_info* qinfo,
|
|
uint16_t qflags, time_t leeway)
|
|
{
|
|
struct mesh_state* s = mesh_area_find(mesh, NULL, qinfo,
|
|
qflags&(BIT_RD|BIT_CD), 0, 0);
|
|
#ifdef UNBOUND_DEBUG
|
|
struct rbnode_type* n;
|
|
#endif
|
|
/* already exists, and for a different purpose perhaps.
|
|
* if mesh_no_list, keep it that way. */
|
|
if(s) {
|
|
/* make it ignore the cache from now on */
|
|
if(!s->s.blacklist)
|
|
sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region);
|
|
if(s->s.prefetch_leeway < leeway)
|
|
s->s.prefetch_leeway = leeway;
|
|
return;
|
|
}
|
|
if(!mesh_make_new_space(mesh, NULL)) {
|
|
verbose(VERB_ALGO, "Too many queries. dropped prefetch.");
|
|
mesh->stats_dropped ++;
|
|
return;
|
|
}
|
|
|
|
s = mesh_state_create(mesh->env, qinfo, NULL,
|
|
qflags&(BIT_RD|BIT_CD), 0, 0);
|
|
if(!s) {
|
|
log_err("prefetch mesh_state_create: out of memory");
|
|
return;
|
|
}
|
|
#ifdef UNBOUND_DEBUG
|
|
n =
|
|
#else
|
|
(void)
|
|
#endif
|
|
rbtree_insert(&mesh->all, &s->node);
|
|
log_assert(n != NULL);
|
|
/* set detached (it is now) */
|
|
mesh->num_detached_states++;
|
|
/* make it ignore the cache */
|
|
sock_list_insert(&s->s.blacklist, NULL, 0, s->s.region);
|
|
s->s.prefetch_leeway = leeway;
|
|
|
|
if(s->list_select == mesh_no_list) {
|
|
/* move to either the forever or the jostle_list */
|
|
if(mesh->num_forever_states < mesh->max_forever_states) {
|
|
mesh->num_forever_states ++;
|
|
mesh_list_insert(s, &mesh->forever_first,
|
|
&mesh->forever_last);
|
|
s->list_select = mesh_forever_list;
|
|
} else {
|
|
mesh_list_insert(s, &mesh->jostle_first,
|
|
&mesh->jostle_last);
|
|
s->list_select = mesh_jostle_list;
|
|
}
|
|
}
|
|
mesh_run(mesh, s, module_event_new, NULL);
|
|
}
|
|
|
|
void mesh_report_reply(struct mesh_area* mesh, struct outbound_entry* e,
|
|
struct comm_reply* reply, int what)
|
|
{
|
|
enum module_ev event = module_event_reply;
|
|
e->qstate->reply = reply;
|
|
if(what != NETEVENT_NOERROR) {
|
|
event = module_event_noreply;
|
|
if(what == NETEVENT_CAPSFAIL)
|
|
event = module_event_capsfail;
|
|
}
|
|
mesh_run(mesh, e->qstate->mesh_info, event, e);
|
|
}
|
|
|
|
struct mesh_state*
|
|
mesh_state_create(struct module_env* env, struct query_info* qinfo,
|
|
struct respip_client_info* cinfo, uint16_t qflags, int prime,
|
|
int valrec)
|
|
{
|
|
struct regional* region = alloc_reg_obtain(env->alloc);
|
|
struct mesh_state* mstate;
|
|
int i;
|
|
if(!region)
|
|
return NULL;
|
|
mstate = (struct mesh_state*)regional_alloc(region,
|
|
sizeof(struct mesh_state));
|
|
if(!mstate) {
|
|
alloc_reg_release(env->alloc, region);
|
|
return NULL;
|
|
}
|
|
memset(mstate, 0, sizeof(*mstate));
|
|
mstate->node = *RBTREE_NULL;
|
|
mstate->run_node = *RBTREE_NULL;
|
|
mstate->node.key = mstate;
|
|
mstate->run_node.key = mstate;
|
|
mstate->reply_list = NULL;
|
|
mstate->list_select = mesh_no_list;
|
|
mstate->replies_sent = 0;
|
|
rbtree_init(&mstate->super_set, &mesh_state_ref_compare);
|
|
rbtree_init(&mstate->sub_set, &mesh_state_ref_compare);
|
|
mstate->num_activated = 0;
|
|
mstate->unique = NULL;
|
|
/* init module qstate */
|
|
mstate->s.qinfo.qtype = qinfo->qtype;
|
|
mstate->s.qinfo.qclass = qinfo->qclass;
|
|
mstate->s.qinfo.local_alias = NULL;
|
|
mstate->s.qinfo.qname_len = qinfo->qname_len;
|
|
mstate->s.qinfo.qname = regional_alloc_init(region, qinfo->qname,
|
|
qinfo->qname_len);
|
|
if(!mstate->s.qinfo.qname) {
|
|
alloc_reg_release(env->alloc, region);
|
|
return NULL;
|
|
}
|
|
if(cinfo) {
|
|
mstate->s.client_info = regional_alloc_init(region, cinfo,
|
|
sizeof(*cinfo));
|
|
if(!mstate->s.client_info) {
|
|
alloc_reg_release(env->alloc, region);
|
|
return NULL;
|
|
}
|
|
}
|
|
/* remove all weird bits from qflags */
|
|
mstate->s.query_flags = (qflags & (BIT_RD|BIT_CD));
|
|
mstate->s.is_priming = prime;
|
|
mstate->s.is_valrec = valrec;
|
|
mstate->s.reply = NULL;
|
|
mstate->s.region = region;
|
|
mstate->s.curmod = 0;
|
|
mstate->s.return_msg = 0;
|
|
mstate->s.return_rcode = LDNS_RCODE_NOERROR;
|
|
mstate->s.env = env;
|
|
mstate->s.mesh_info = mstate;
|
|
mstate->s.prefetch_leeway = 0;
|
|
mstate->s.no_cache_lookup = 0;
|
|
mstate->s.no_cache_store = 0;
|
|
/* init modules */
|
|
for(i=0; i<env->mesh->mods.num; i++) {
|
|
mstate->s.minfo[i] = NULL;
|
|
mstate->s.ext_state[i] = module_state_initial;
|
|
}
|
|
/* init edns option lists */
|
|
mstate->s.edns_opts_front_in = NULL;
|
|
mstate->s.edns_opts_back_out = NULL;
|
|
mstate->s.edns_opts_back_in = NULL;
|
|
mstate->s.edns_opts_front_out = NULL;
|
|
|
|
return mstate;
|
|
}
|
|
|
|
int
|
|
mesh_state_is_unique(struct mesh_state* mstate)
|
|
{
|
|
return mstate->unique != NULL;
|
|
}
|
|
|
|
void
|
|
mesh_state_make_unique(struct mesh_state* mstate)
|
|
{
|
|
mstate->unique = mstate;
|
|
}
|
|
|
|
void
|
|
mesh_state_cleanup(struct mesh_state* mstate)
|
|
{
|
|
struct mesh_area* mesh;
|
|
int i;
|
|
if(!mstate)
|
|
return;
|
|
mesh = mstate->s.env->mesh;
|
|
/* drop unsent replies */
|
|
if(!mstate->replies_sent) {
|
|
struct mesh_reply* rep;
|
|
struct mesh_cb* cb;
|
|
for(rep=mstate->reply_list; rep; rep=rep->next) {
|
|
comm_point_drop_reply(&rep->query_reply);
|
|
mesh->num_reply_addrs--;
|
|
}
|
|
for(cb=mstate->cb_list; cb; cb=cb->next) {
|
|
fptr_ok(fptr_whitelist_mesh_cb(cb->cb));
|
|
(*cb->cb)(cb->cb_arg, LDNS_RCODE_SERVFAIL, NULL,
|
|
sec_status_unchecked, NULL);
|
|
mesh->num_reply_addrs--;
|
|
}
|
|
}
|
|
|
|
/* de-init modules */
|
|
for(i=0; i<mesh->mods.num; i++) {
|
|
fptr_ok(fptr_whitelist_mod_clear(mesh->mods.mod[i]->clear));
|
|
(*mesh->mods.mod[i]->clear)(&mstate->s, i);
|
|
mstate->s.minfo[i] = NULL;
|
|
mstate->s.ext_state[i] = module_finished;
|
|
}
|
|
alloc_reg_release(mstate->s.env->alloc, mstate->s.region);
|
|
}
|
|
|
|
void
|
|
mesh_state_delete(struct module_qstate* qstate)
|
|
{
|
|
struct mesh_area* mesh;
|
|
struct mesh_state_ref* super, ref;
|
|
struct mesh_state* mstate;
|
|
if(!qstate)
|
|
return;
|
|
mstate = qstate->mesh_info;
|
|
mesh = mstate->s.env->mesh;
|
|
mesh_detach_subs(&mstate->s);
|
|
if(mstate->list_select == mesh_forever_list) {
|
|
mesh->num_forever_states --;
|
|
mesh_list_remove(mstate, &mesh->forever_first,
|
|
&mesh->forever_last);
|
|
} else if(mstate->list_select == mesh_jostle_list) {
|
|
mesh_list_remove(mstate, &mesh->jostle_first,
|
|
&mesh->jostle_last);
|
|
}
|
|
if(!mstate->reply_list && !mstate->cb_list
|
|
&& mstate->super_set.count == 0) {
|
|
log_assert(mesh->num_detached_states > 0);
|
|
mesh->num_detached_states--;
|
|
}
|
|
if(mstate->reply_list || mstate->cb_list) {
|
|
log_assert(mesh->num_reply_states > 0);
|
|
mesh->num_reply_states--;
|
|
}
|
|
ref.node.key = &ref;
|
|
ref.s = mstate;
|
|
RBTREE_FOR(super, struct mesh_state_ref*, &mstate->super_set) {
|
|
(void)rbtree_delete(&super->s->sub_set, &ref);
|
|
}
|
|
(void)rbtree_delete(&mesh->run, mstate);
|
|
(void)rbtree_delete(&mesh->all, mstate);
|
|
mesh_state_cleanup(mstate);
|
|
}
|
|
|
|
/** helper recursive rbtree find routine */
|
|
static int
|
|
find_in_subsub(struct mesh_state* m, struct mesh_state* tofind, size_t *c)
|
|
{
|
|
struct mesh_state_ref* r;
|
|
if((*c)++ > MESH_MAX_SUBSUB)
|
|
return 1;
|
|
RBTREE_FOR(r, struct mesh_state_ref*, &m->sub_set) {
|
|
if(r->s == tofind || find_in_subsub(r->s, tofind, c))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** find cycle for already looked up mesh_state */
|
|
static int
|
|
mesh_detect_cycle_found(struct module_qstate* qstate, struct mesh_state* dep_m)
|
|
{
|
|
struct mesh_state* cyc_m = qstate->mesh_info;
|
|
size_t counter = 0;
|
|
if(!dep_m)
|
|
return 0;
|
|
if(dep_m == cyc_m || find_in_subsub(dep_m, cyc_m, &counter)) {
|
|
if(counter > MESH_MAX_SUBSUB)
|
|
return 2;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void mesh_detach_subs(struct module_qstate* qstate)
|
|
{
|
|
struct mesh_area* mesh = qstate->env->mesh;
|
|
struct mesh_state_ref* ref, lookup;
|
|
#ifdef UNBOUND_DEBUG
|
|
struct rbnode_type* n;
|
|
#endif
|
|
lookup.node.key = &lookup;
|
|
lookup.s = qstate->mesh_info;
|
|
RBTREE_FOR(ref, struct mesh_state_ref*, &qstate->mesh_info->sub_set) {
|
|
#ifdef UNBOUND_DEBUG
|
|
n =
|
|
#else
|
|
(void)
|
|
#endif
|
|
rbtree_delete(&ref->s->super_set, &lookup);
|
|
log_assert(n != NULL); /* must have been present */
|
|
if(!ref->s->reply_list && !ref->s->cb_list
|
|
&& ref->s->super_set.count == 0) {
|
|
mesh->num_detached_states++;
|
|
log_assert(mesh->num_detached_states +
|
|
mesh->num_reply_states <= mesh->all.count);
|
|
}
|
|
}
|
|
rbtree_init(&qstate->mesh_info->sub_set, &mesh_state_ref_compare);
|
|
}
|
|
|
|
int mesh_attach_sub(struct module_qstate* qstate, struct query_info* qinfo,
|
|
uint16_t qflags, int prime, int valrec, struct module_qstate** newq)
|
|
{
|
|
/* find it, if not, create it */
|
|
struct mesh_area* mesh = qstate->env->mesh;
|
|
struct mesh_state* sub = mesh_area_find(mesh, NULL, qinfo, qflags,
|
|
prime, valrec);
|
|
int was_detached;
|
|
if(mesh_detect_cycle_found(qstate, sub)) {
|
|
verbose(VERB_ALGO, "attach failed, cycle detected");
|
|
return 0;
|
|
}
|
|
if(!sub) {
|
|
#ifdef UNBOUND_DEBUG
|
|
struct rbnode_type* n;
|
|
#endif
|
|
/* create a new one */
|
|
sub = mesh_state_create(qstate->env, qinfo, NULL, qflags, prime,
|
|
valrec);
|
|
if(!sub) {
|
|
log_err("mesh_attach_sub: out of memory");
|
|
return 0;
|
|
}
|
|
#ifdef UNBOUND_DEBUG
|
|
n =
|
|
#else
|
|
(void)
|
|
#endif
|
|
rbtree_insert(&mesh->all, &sub->node);
|
|
log_assert(n != NULL);
|
|
/* set detached (it is now) */
|
|
mesh->num_detached_states++;
|
|
/* set new query state to run */
|
|
#ifdef UNBOUND_DEBUG
|
|
n =
|
|
#else
|
|
(void)
|
|
#endif
|
|
rbtree_insert(&mesh->run, &sub->run_node);
|
|
log_assert(n != NULL);
|
|
*newq = &sub->s;
|
|
} else
|
|
*newq = NULL;
|
|
was_detached = (sub->super_set.count == 0);
|
|
if(!mesh_state_attachment(qstate->mesh_info, sub))
|
|
return 0;
|
|
/* if it was a duplicate attachment, the count was not zero before */
|
|
if(!sub->reply_list && !sub->cb_list && was_detached &&
|
|
sub->super_set.count == 1) {
|
|
/* it used to be detached, before this one got added */
|
|
log_assert(mesh->num_detached_states > 0);
|
|
mesh->num_detached_states--;
|
|
}
|
|
/* *newq will be run when inited after the current module stops */
|
|
return 1;
|
|
}
|
|
|
|
int mesh_state_attachment(struct mesh_state* super, struct mesh_state* sub)
|
|
{
|
|
#ifdef UNBOUND_DEBUG
|
|
struct rbnode_type* n;
|
|
#endif
|
|
struct mesh_state_ref* subref; /* points to sub, inserted in super */
|
|
struct mesh_state_ref* superref; /* points to super, inserted in sub */
|
|
if( !(subref = regional_alloc(super->s.region,
|
|
sizeof(struct mesh_state_ref))) ||
|
|
!(superref = regional_alloc(sub->s.region,
|
|
sizeof(struct mesh_state_ref))) ) {
|
|
log_err("mesh_state_attachment: out of memory");
|
|
return 0;
|
|
}
|
|
superref->node.key = superref;
|
|
superref->s = super;
|
|
subref->node.key = subref;
|
|
subref->s = sub;
|
|
if(!rbtree_insert(&sub->super_set, &superref->node)) {
|
|
/* this should not happen, iterator and validator do not
|
|
* attach subqueries that are identical. */
|
|
/* already attached, we are done, nothing todo.
|
|
* since superref and subref already allocated in region,
|
|
* we cannot free them */
|
|
return 1;
|
|
}
|
|
#ifdef UNBOUND_DEBUG
|
|
n =
|
|
#else
|
|
(void)
|
|
#endif
|
|
rbtree_insert(&super->sub_set, &subref->node);
|
|
log_assert(n != NULL); /* we checked above if statement, the reverse
|
|
administration should not fail now, unless they are out of sync */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* callback results to mesh cb entry
|
|
* @param m: mesh state to send it for.
|
|
* @param rcode: if not 0, error code.
|
|
* @param rep: reply to send (or NULL if rcode is set).
|
|
* @param r: callback entry
|
|
*/
|
|
static void
|
|
mesh_do_callback(struct mesh_state* m, int rcode, struct reply_info* rep,
|
|
struct mesh_cb* r)
|
|
{
|
|
int secure;
|
|
char* reason = NULL;
|
|
/* bogus messages are not made into servfail, sec_status passed
|
|
* to the callback function */
|
|
if(rep && rep->security == sec_status_secure)
|
|
secure = 1;
|
|
else secure = 0;
|
|
if(!rep && rcode == LDNS_RCODE_NOERROR)
|
|
rcode = LDNS_RCODE_SERVFAIL;
|
|
if(!rcode && rep->security == sec_status_bogus) {
|
|
if(!(reason = errinf_to_str(&m->s)))
|
|
rcode = LDNS_RCODE_SERVFAIL;
|
|
}
|
|
/* send the reply */
|
|
if(rcode) {
|
|
if(rcode == LDNS_RCODE_SERVFAIL) {
|
|
if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s,
|
|
rep, rcode, &r->edns, m->s.region))
|
|
r->edns.opt_list = NULL;
|
|
} else {
|
|
if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode,
|
|
&r->edns, m->s.region))
|
|
r->edns.opt_list = NULL;
|
|
}
|
|
fptr_ok(fptr_whitelist_mesh_cb(r->cb));
|
|
(*r->cb)(r->cb_arg, rcode, r->buf, sec_status_unchecked, NULL);
|
|
} else {
|
|
size_t udp_size = r->edns.udp_size;
|
|
sldns_buffer_clear(r->buf);
|
|
r->edns.edns_version = EDNS_ADVERTISED_VERSION;
|
|
r->edns.udp_size = EDNS_ADVERTISED_SIZE;
|
|
r->edns.ext_rcode = 0;
|
|
r->edns.bits &= EDNS_DO;
|
|
|
|
if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep,
|
|
LDNS_RCODE_NOERROR, &r->edns, m->s.region) ||
|
|
!reply_info_answer_encode(&m->s.qinfo, rep, r->qid,
|
|
r->qflags, r->buf, 0, 1,
|
|
m->s.env->scratch, udp_size, &r->edns,
|
|
(int)(r->edns.bits & EDNS_DO), secure))
|
|
{
|
|
fptr_ok(fptr_whitelist_mesh_cb(r->cb));
|
|
(*r->cb)(r->cb_arg, LDNS_RCODE_SERVFAIL, r->buf,
|
|
sec_status_unchecked, NULL);
|
|
} else {
|
|
fptr_ok(fptr_whitelist_mesh_cb(r->cb));
|
|
(*r->cb)(r->cb_arg, LDNS_RCODE_NOERROR, r->buf,
|
|
rep->security, reason);
|
|
}
|
|
}
|
|
free(reason);
|
|
m->s.env->mesh->num_reply_addrs--;
|
|
}
|
|
|
|
/**
|
|
* Send reply to mesh reply entry
|
|
* @param m: mesh state to send it for.
|
|
* @param rcode: if not 0, error code.
|
|
* @param rep: reply to send (or NULL if rcode is set).
|
|
* @param r: reply entry
|
|
* @param prev: previous reply, already has its answer encoded in buffer.
|
|
*/
|
|
static void
|
|
mesh_send_reply(struct mesh_state* m, int rcode, struct reply_info* rep,
|
|
struct mesh_reply* r, struct mesh_reply* prev)
|
|
{
|
|
struct timeval end_time;
|
|
struct timeval duration;
|
|
int secure;
|
|
/* Copy the client's EDNS for later restore, to make sure the edns
|
|
* compare is with the correct edns options. */
|
|
struct edns_data edns_bak = r->edns;
|
|
/* examine security status */
|
|
if(m->s.env->need_to_validate && (!(r->qflags&BIT_CD) ||
|
|
m->s.env->cfg->ignore_cd) && rep &&
|
|
rep->security <= sec_status_bogus) {
|
|
rcode = LDNS_RCODE_SERVFAIL;
|
|
if(m->s.env->cfg->stat_extended)
|
|
m->s.env->mesh->ans_bogus++;
|
|
}
|
|
if(rep && rep->security == sec_status_secure)
|
|
secure = 1;
|
|
else secure = 0;
|
|
if(!rep && rcode == LDNS_RCODE_NOERROR)
|
|
rcode = LDNS_RCODE_SERVFAIL;
|
|
/* send the reply */
|
|
/* We don't reuse the encoded answer if either the previous or current
|
|
* response has a local alias. We could compare the alias records
|
|
* and still reuse the previous answer if they are the same, but that
|
|
* would be complicated and error prone for the relatively minor case.
|
|
* So we err on the side of safety. */
|
|
if(prev && prev->qflags == r->qflags &&
|
|
!prev->local_alias && !r->local_alias &&
|
|
prev->edns.edns_present == r->edns.edns_present &&
|
|
prev->edns.bits == r->edns.bits &&
|
|
prev->edns.udp_size == r->edns.udp_size &&
|
|
edns_opt_list_compare(prev->edns.opt_list, r->edns.opt_list)
|
|
== 0) {
|
|
/* if the previous reply is identical to this one, fix ID */
|
|
if(prev->query_reply.c->buffer != r->query_reply.c->buffer)
|
|
sldns_buffer_copy(r->query_reply.c->buffer,
|
|
prev->query_reply.c->buffer);
|
|
sldns_buffer_write_at(r->query_reply.c->buffer, 0,
|
|
&r->qid, sizeof(uint16_t));
|
|
sldns_buffer_write_at(r->query_reply.c->buffer, 12,
|
|
r->qname, m->s.qinfo.qname_len);
|
|
comm_point_send_reply(&r->query_reply);
|
|
} else if(rcode) {
|
|
m->s.qinfo.qname = r->qname;
|
|
m->s.qinfo.local_alias = r->local_alias;
|
|
if(rcode == LDNS_RCODE_SERVFAIL) {
|
|
if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s,
|
|
rep, rcode, &r->edns, m->s.region))
|
|
r->edns.opt_list = NULL;
|
|
} else {
|
|
if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep, rcode,
|
|
&r->edns, m->s.region))
|
|
r->edns.opt_list = NULL;
|
|
}
|
|
error_encode(r->query_reply.c->buffer, rcode, &m->s.qinfo,
|
|
r->qid, r->qflags, &r->edns);
|
|
comm_point_send_reply(&r->query_reply);
|
|
} else {
|
|
size_t udp_size = r->edns.udp_size;
|
|
r->edns.edns_version = EDNS_ADVERTISED_VERSION;
|
|
r->edns.udp_size = EDNS_ADVERTISED_SIZE;
|
|
r->edns.ext_rcode = 0;
|
|
r->edns.bits &= EDNS_DO;
|
|
m->s.qinfo.qname = r->qname;
|
|
m->s.qinfo.local_alias = r->local_alias;
|
|
if(!inplace_cb_reply_call(m->s.env, &m->s.qinfo, &m->s, rep,
|
|
LDNS_RCODE_NOERROR, &r->edns, m->s.region) ||
|
|
!reply_info_answer_encode(&m->s.qinfo, rep, r->qid,
|
|
r->qflags, r->query_reply.c->buffer, 0, 1,
|
|
m->s.env->scratch, udp_size, &r->edns,
|
|
(int)(r->edns.bits & EDNS_DO), secure))
|
|
{
|
|
if(!inplace_cb_reply_servfail_call(m->s.env, &m->s.qinfo, &m->s,
|
|
rep, LDNS_RCODE_SERVFAIL, &r->edns, m->s.region))
|
|
r->edns.opt_list = NULL;
|
|
error_encode(r->query_reply.c->buffer,
|
|
LDNS_RCODE_SERVFAIL, &m->s.qinfo, r->qid,
|
|
r->qflags, &r->edns);
|
|
}
|
|
r->edns = edns_bak;
|
|
comm_point_send_reply(&r->query_reply);
|
|
}
|
|
/* account */
|
|
m->s.env->mesh->num_reply_addrs--;
|
|
end_time = *m->s.env->now_tv;
|
|
timeval_subtract(&duration, &end_time, &r->start_time);
|
|
verbose(VERB_ALGO, "query took " ARG_LL "d.%6.6d sec",
|
|
(long long)duration.tv_sec, (int)duration.tv_usec);
|
|
m->s.env->mesh->replies_sent++;
|
|
timeval_add(&m->s.env->mesh->replies_sum_wait, &duration);
|
|
timehist_insert(m->s.env->mesh->histogram, &duration);
|
|
if(m->s.env->cfg->stat_extended) {
|
|
uint16_t rc = FLAGS_GET_RCODE(sldns_buffer_read_u16_at(r->
|
|
query_reply.c->buffer, 2));
|
|
if(secure) m->s.env->mesh->ans_secure++;
|
|
m->s.env->mesh->ans_rcode[ rc ] ++;
|
|
if(rc == 0 && LDNS_ANCOUNT(sldns_buffer_begin(r->
|
|
query_reply.c->buffer)) == 0)
|
|
m->s.env->mesh->ans_nodata++;
|
|
}
|
|
/* Log reply sent */
|
|
if(m->s.env->cfg->log_replies) {
|
|
log_reply_info(0, &m->s.qinfo, &r->query_reply.addr,
|
|
r->query_reply.addrlen, duration, 0,
|
|
r->query_reply.c->buffer);
|
|
}
|
|
}
|
|
|
|
void mesh_query_done(struct mesh_state* mstate)
|
|
{
|
|
struct mesh_reply* r;
|
|
struct mesh_reply* prev = NULL;
|
|
struct mesh_cb* c;
|
|
struct reply_info* rep = (mstate->s.return_msg?
|
|
mstate->s.return_msg->rep:NULL);
|
|
for(r = mstate->reply_list; r; r = r->next) {
|
|
/* if a response-ip address block has been stored the
|
|
* information should be logged for each client. */
|
|
if(mstate->s.respip_action_info &&
|
|
mstate->s.respip_action_info->addrinfo) {
|
|
respip_inform_print(mstate->s.respip_action_info->addrinfo,
|
|
r->qname, mstate->s.qinfo.qtype,
|
|
mstate->s.qinfo.qclass, r->local_alias,
|
|
&r->query_reply);
|
|
}
|
|
|
|
/* if this query is determined to be dropped during the
|
|
* mesh processing, this is the point to take that action. */
|
|
if(mstate->s.is_drop)
|
|
comm_point_drop_reply(&r->query_reply);
|
|
else {
|
|
mesh_send_reply(mstate, mstate->s.return_rcode, rep,
|
|
r, prev);
|
|
prev = r;
|
|
}
|
|
}
|
|
mstate->replies_sent = 1;
|
|
for(c = mstate->cb_list; c; c = c->next) {
|
|
mesh_do_callback(mstate, mstate->s.return_rcode, rep, c);
|
|
}
|
|
}
|
|
|
|
void mesh_walk_supers(struct mesh_area* mesh, struct mesh_state* mstate)
|
|
{
|
|
struct mesh_state_ref* ref;
|
|
RBTREE_FOR(ref, struct mesh_state_ref*, &mstate->super_set)
|
|
{
|
|
/* make super runnable */
|
|
(void)rbtree_insert(&mesh->run, &ref->s->run_node);
|
|
/* callback the function to inform super of result */
|
|
fptr_ok(fptr_whitelist_mod_inform_super(
|
|
mesh->mods.mod[ref->s->s.curmod]->inform_super));
|
|
(*mesh->mods.mod[ref->s->s.curmod]->inform_super)(&mstate->s,
|
|
ref->s->s.curmod, &ref->s->s);
|
|
}
|
|
}
|
|
|
|
struct mesh_state* mesh_area_find(struct mesh_area* mesh,
|
|
struct respip_client_info* cinfo, struct query_info* qinfo,
|
|
uint16_t qflags, int prime, int valrec)
|
|
{
|
|
struct mesh_state key;
|
|
struct mesh_state* result;
|
|
|
|
key.node.key = &key;
|
|
key.s.is_priming = prime;
|
|
key.s.is_valrec = valrec;
|
|
key.s.qinfo = *qinfo;
|
|
key.s.query_flags = qflags;
|
|
/* We are searching for a similar mesh state when we DO want to
|
|
* aggregate the state. Thus unique is set to NULL. (default when we
|
|
* desire aggregation).*/
|
|
key.unique = NULL;
|
|
key.s.client_info = cinfo;
|
|
|
|
result = (struct mesh_state*)rbtree_search(&mesh->all, &key);
|
|
return result;
|
|
}
|
|
|
|
int mesh_state_add_cb(struct mesh_state* s, struct edns_data* edns,
|
|
sldns_buffer* buf, mesh_cb_func_type cb, void* cb_arg,
|
|
uint16_t qid, uint16_t qflags)
|
|
{
|
|
struct mesh_cb* r = regional_alloc(s->s.region,
|
|
sizeof(struct mesh_cb));
|
|
if(!r)
|
|
return 0;
|
|
r->buf = buf;
|
|
log_assert(fptr_whitelist_mesh_cb(cb)); /* early failure ifmissing*/
|
|
r->cb = cb;
|
|
r->cb_arg = cb_arg;
|
|
r->edns = *edns;
|
|
if(edns->opt_list) {
|
|
r->edns.opt_list = edns_opt_copy_region(edns->opt_list,
|
|
s->s.region);
|
|
if(!r->edns.opt_list)
|
|
return 0;
|
|
}
|
|
r->qid = qid;
|
|
r->qflags = qflags;
|
|
r->next = s->cb_list;
|
|
s->cb_list = r;
|
|
return 1;
|
|
|
|
}
|
|
|
|
int mesh_state_add_reply(struct mesh_state* s, struct edns_data* edns,
|
|
struct comm_reply* rep, uint16_t qid, uint16_t qflags,
|
|
const struct query_info* qinfo)
|
|
{
|
|
struct mesh_reply* r = regional_alloc(s->s.region,
|
|
sizeof(struct mesh_reply));
|
|
if(!r)
|
|
return 0;
|
|
r->query_reply = *rep;
|
|
r->edns = *edns;
|
|
if(edns->opt_list) {
|
|
r->edns.opt_list = edns_opt_copy_region(edns->opt_list,
|
|
s->s.region);
|
|
if(!r->edns.opt_list)
|
|
return 0;
|
|
}
|
|
r->qid = qid;
|
|
r->qflags = qflags;
|
|
r->start_time = *s->s.env->now_tv;
|
|
r->next = s->reply_list;
|
|
r->qname = regional_alloc_init(s->s.region, qinfo->qname,
|
|
s->s.qinfo.qname_len);
|
|
if(!r->qname)
|
|
return 0;
|
|
|
|
/* Data related to local alias stored in 'qinfo' (if any) is ephemeral
|
|
* and can be different for different original queries (even if the
|
|
* replaced query name is the same). So we need to make a deep copy
|
|
* and store the copy for each reply info. */
|
|
if(qinfo->local_alias) {
|
|
struct packed_rrset_data* d;
|
|
struct packed_rrset_data* dsrc;
|
|
r->local_alias = regional_alloc_zero(s->s.region,
|
|
sizeof(*qinfo->local_alias));
|
|
if(!r->local_alias)
|
|
return 0;
|
|
r->local_alias->rrset = regional_alloc_init(s->s.region,
|
|
qinfo->local_alias->rrset,
|
|
sizeof(*qinfo->local_alias->rrset));
|
|
if(!r->local_alias->rrset)
|
|
return 0;
|
|
dsrc = qinfo->local_alias->rrset->entry.data;
|
|
|
|
/* In the current implementation, a local alias must be
|
|
* a single CNAME RR (see worker_handle_request()). */
|
|
log_assert(!qinfo->local_alias->next && dsrc->count == 1 &&
|
|
qinfo->local_alias->rrset->rk.type ==
|
|
htons(LDNS_RR_TYPE_CNAME));
|
|
/* Technically, we should make a local copy for the owner
|
|
* name of the RRset, but in the case of the first (and
|
|
* currently only) local alias RRset, the owner name should
|
|
* point to the qname of the corresponding query, which should
|
|
* be valid throughout the lifetime of this mesh_reply. So
|
|
* we can skip copying. */
|
|
log_assert(qinfo->local_alias->rrset->rk.dname ==
|
|
sldns_buffer_at(rep->c->buffer, LDNS_HEADER_SIZE));
|
|
|
|
d = regional_alloc_init(s->s.region, dsrc,
|
|
sizeof(struct packed_rrset_data)
|
|
+ sizeof(size_t) + sizeof(uint8_t*) + sizeof(time_t));
|
|
if(!d)
|
|
return 0;
|
|
r->local_alias->rrset->entry.data = d;
|
|
d->rr_len = (size_t*)((uint8_t*)d +
|
|
sizeof(struct packed_rrset_data));
|
|
d->rr_data = (uint8_t**)&(d->rr_len[1]);
|
|
d->rr_ttl = (time_t*)&(d->rr_data[1]);
|
|
d->rr_len[0] = dsrc->rr_len[0];
|
|
d->rr_ttl[0] = dsrc->rr_ttl[0];
|
|
d->rr_data[0] = regional_alloc_init(s->s.region,
|
|
dsrc->rr_data[0], d->rr_len[0]);
|
|
if(!d->rr_data[0])
|
|
return 0;
|
|
} else
|
|
r->local_alias = NULL;
|
|
|
|
s->reply_list = r;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Continue processing the mesh state at another module.
|
|
* Handles module to modules tranfer of control.
|
|
* Handles module finished.
|
|
* @param mesh: the mesh area.
|
|
* @param mstate: currently active mesh state.
|
|
* Deleted if finished, calls _done and _supers to
|
|
* send replies to clients and inform other mesh states.
|
|
* This in turn may create additional runnable mesh states.
|
|
* @param s: state at which the current module exited.
|
|
* @param ev: the event sent to the module.
|
|
* returned is the event to send to the next module.
|
|
* @return true if continue processing at the new module.
|
|
* false if not continued processing is needed.
|
|
*/
|
|
static int
|
|
mesh_continue(struct mesh_area* mesh, struct mesh_state* mstate,
|
|
enum module_ext_state s, enum module_ev* ev)
|
|
{
|
|
mstate->num_activated++;
|
|
if(mstate->num_activated > MESH_MAX_ACTIVATION) {
|
|
/* module is looping. Stop it. */
|
|
log_err("internal error: looping module stopped");
|
|
log_query_info(VERB_QUERY, "pass error for qstate",
|
|
&mstate->s.qinfo);
|
|
s = module_error;
|
|
}
|
|
if(s == module_wait_module || s == module_restart_next) {
|
|
/* start next module */
|
|
mstate->s.curmod++;
|
|
if(mesh->mods.num == mstate->s.curmod) {
|
|
log_err("Cannot pass to next module; at last module");
|
|
log_query_info(VERB_QUERY, "pass error for qstate",
|
|
&mstate->s.qinfo);
|
|
mstate->s.curmod--;
|
|
return mesh_continue(mesh, mstate, module_error, ev);
|
|
}
|
|
if(s == module_restart_next) {
|
|
int curmod = mstate->s.curmod;
|
|
for(; mstate->s.curmod < mesh->mods.num;
|
|
mstate->s.curmod++) {
|
|
fptr_ok(fptr_whitelist_mod_clear(
|
|
mesh->mods.mod[mstate->s.curmod]->clear));
|
|
(*mesh->mods.mod[mstate->s.curmod]->clear)
|
|
(&mstate->s, mstate->s.curmod);
|
|
mstate->s.minfo[mstate->s.curmod] = NULL;
|
|
}
|
|
mstate->s.curmod = curmod;
|
|
}
|
|
*ev = module_event_pass;
|
|
return 1;
|
|
}
|
|
if(s == module_wait_subquery && mstate->sub_set.count == 0) {
|
|
log_err("module cannot wait for subquery, subquery list empty");
|
|
log_query_info(VERB_QUERY, "pass error for qstate",
|
|
&mstate->s.qinfo);
|
|
s = module_error;
|
|
}
|
|
if(s == module_error && mstate->s.return_rcode == LDNS_RCODE_NOERROR) {
|
|
/* error is bad, handle pass back up below */
|
|
mstate->s.return_rcode = LDNS_RCODE_SERVFAIL;
|
|
}
|
|
if(s == module_error || s == module_finished) {
|
|
if(mstate->s.curmod == 0) {
|
|
mesh_query_done(mstate);
|
|
mesh_walk_supers(mesh, mstate);
|
|
mesh_state_delete(&mstate->s);
|
|
return 0;
|
|
}
|
|
/* pass along the locus of control */
|
|
mstate->s.curmod --;
|
|
*ev = module_event_moddone;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void mesh_run(struct mesh_area* mesh, struct mesh_state* mstate,
|
|
enum module_ev ev, struct outbound_entry* e)
|
|
{
|
|
enum module_ext_state s;
|
|
verbose(VERB_ALGO, "mesh_run: start");
|
|
while(mstate) {
|
|
/* run the module */
|
|
fptr_ok(fptr_whitelist_mod_operate(
|
|
mesh->mods.mod[mstate->s.curmod]->operate));
|
|
(*mesh->mods.mod[mstate->s.curmod]->operate)
|
|
(&mstate->s, ev, mstate->s.curmod, e);
|
|
|
|
/* examine results */
|
|
mstate->s.reply = NULL;
|
|
regional_free_all(mstate->s.env->scratch);
|
|
s = mstate->s.ext_state[mstate->s.curmod];
|
|
verbose(VERB_ALGO, "mesh_run: %s module exit state is %s",
|
|
mesh->mods.mod[mstate->s.curmod]->name, strextstate(s));
|
|
e = NULL;
|
|
if(mesh_continue(mesh, mstate, s, &ev))
|
|
continue;
|
|
|
|
/* run more modules */
|
|
ev = module_event_pass;
|
|
if(mesh->run.count > 0) {
|
|
/* pop random element off the runnable tree */
|
|
mstate = (struct mesh_state*)mesh->run.root->key;
|
|
(void)rbtree_delete(&mesh->run, mstate);
|
|
} else mstate = NULL;
|
|
}
|
|
if(verbosity >= VERB_ALGO) {
|
|
mesh_stats(mesh, "mesh_run: end");
|
|
mesh_log_list(mesh);
|
|
}
|
|
}
|
|
|
|
void
|
|
mesh_log_list(struct mesh_area* mesh)
|
|
{
|
|
char buf[30];
|
|
struct mesh_state* m;
|
|
int num = 0;
|
|
RBTREE_FOR(m, struct mesh_state*, &mesh->all) {
|
|
snprintf(buf, sizeof(buf), "%d%s%s%s%s%s%s mod%d %s%s",
|
|
num++, (m->s.is_priming)?"p":"", /* prime */
|
|
(m->s.is_valrec)?"v":"", /* prime */
|
|
(m->s.query_flags&BIT_RD)?"RD":"",
|
|
(m->s.query_flags&BIT_CD)?"CD":"",
|
|
(m->super_set.count==0)?"d":"", /* detached */
|
|
(m->sub_set.count!=0)?"c":"", /* children */
|
|
m->s.curmod, (m->reply_list)?"rep":"", /*hasreply*/
|
|
(m->cb_list)?"cb":"" /* callbacks */
|
|
);
|
|
log_query_info(VERB_ALGO, buf, &m->s.qinfo);
|
|
}
|
|
}
|
|
|
|
void
|
|
mesh_stats(struct mesh_area* mesh, const char* str)
|
|
{
|
|
verbose(VERB_DETAIL, "%s %u recursion states (%u with reply, "
|
|
"%u detached), %u waiting replies, %u recursion replies "
|
|
"sent, %d replies dropped, %d states jostled out",
|
|
str, (unsigned)mesh->all.count,
|
|
(unsigned)mesh->num_reply_states,
|
|
(unsigned)mesh->num_detached_states,
|
|
(unsigned)mesh->num_reply_addrs,
|
|
(unsigned)mesh->replies_sent,
|
|
(unsigned)mesh->stats_dropped,
|
|
(unsigned)mesh->stats_jostled);
|
|
if(mesh->replies_sent > 0) {
|
|
struct timeval avg;
|
|
timeval_divide(&avg, &mesh->replies_sum_wait,
|
|
mesh->replies_sent);
|
|
log_info("average recursion processing time "
|
|
ARG_LL "d.%6.6d sec",
|
|
(long long)avg.tv_sec, (int)avg.tv_usec);
|
|
log_info("histogram of recursion processing times");
|
|
timehist_log(mesh->histogram, "recursions");
|
|
}
|
|
}
|
|
|
|
void
|
|
mesh_stats_clear(struct mesh_area* mesh)
|
|
{
|
|
if(!mesh)
|
|
return;
|
|
mesh->replies_sent = 0;
|
|
mesh->replies_sum_wait.tv_sec = 0;
|
|
mesh->replies_sum_wait.tv_usec = 0;
|
|
mesh->stats_jostled = 0;
|
|
mesh->stats_dropped = 0;
|
|
timehist_clear(mesh->histogram);
|
|
mesh->ans_secure = 0;
|
|
mesh->ans_bogus = 0;
|
|
memset(&mesh->ans_rcode[0], 0, sizeof(size_t)*16);
|
|
mesh->ans_nodata = 0;
|
|
}
|
|
|
|
size_t
|
|
mesh_get_mem(struct mesh_area* mesh)
|
|
{
|
|
struct mesh_state* m;
|
|
size_t s = sizeof(*mesh) + sizeof(struct timehist) +
|
|
sizeof(struct th_buck)*mesh->histogram->num +
|
|
sizeof(sldns_buffer) + sldns_buffer_capacity(mesh->qbuf_bak);
|
|
RBTREE_FOR(m, struct mesh_state*, &mesh->all) {
|
|
/* all, including m itself allocated in qstate region */
|
|
s += regional_get_mem(m->s.region);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
int
|
|
mesh_detect_cycle(struct module_qstate* qstate, struct query_info* qinfo,
|
|
uint16_t flags, int prime, int valrec)
|
|
{
|
|
struct mesh_area* mesh = qstate->env->mesh;
|
|
struct mesh_state* dep_m = NULL;
|
|
if(!mesh_state_is_unique(qstate->mesh_info))
|
|
dep_m = mesh_area_find(mesh, NULL, qinfo, flags, prime, valrec);
|
|
return mesh_detect_cycle_found(qstate, dep_m);
|
|
}
|
|
|
|
void mesh_list_insert(struct mesh_state* m, struct mesh_state** fp,
|
|
struct mesh_state** lp)
|
|
{
|
|
/* insert as last element */
|
|
m->prev = *lp;
|
|
m->next = NULL;
|
|
if(*lp)
|
|
(*lp)->next = m;
|
|
else *fp = m;
|
|
*lp = m;
|
|
}
|
|
|
|
void mesh_list_remove(struct mesh_state* m, struct mesh_state** fp,
|
|
struct mesh_state** lp)
|
|
{
|
|
if(m->next)
|
|
m->next->prev = m->prev;
|
|
else *lp = m->prev;
|
|
if(m->prev)
|
|
m->prev->next = m->next;
|
|
else *fp = m->next;
|
|
}
|