1754 lines
45 KiB
C
1754 lines
45 KiB
C
/*
|
|
* validator/val_secalgo.c - validator security algorithm functions.
|
|
*
|
|
* Copyright (c) 2012, NLnet Labs. All rights reserved.
|
|
*
|
|
* This software is open source.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
*
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* Neither the name of the NLNET LABS nor the names of its contributors may
|
|
* be used to endorse or promote products derived from this software without
|
|
* specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* \file
|
|
*
|
|
* This file contains helper functions for the validator module.
|
|
* These functions take raw data buffers, formatted for crypto verification,
|
|
* and do the library calls (for the crypto library in use).
|
|
*/
|
|
#include "config.h"
|
|
/* packed_rrset on top to define enum types (forced by c99 standard) */
|
|
#include "util/data/packed_rrset.h"
|
|
#include "validator/val_secalgo.h"
|
|
#include "validator/val_nsec3.h"
|
|
#include "util/log.h"
|
|
#include "sldns/rrdef.h"
|
|
#include "sldns/keyraw.h"
|
|
#include "sldns/sbuffer.h"
|
|
|
|
#if !defined(HAVE_SSL) && !defined(HAVE_NSS) && !defined(HAVE_NETTLE)
|
|
#error "Need crypto library to do digital signature cryptography"
|
|
#endif
|
|
|
|
/* OpenSSL implementation */
|
|
#ifdef HAVE_SSL
|
|
#ifdef HAVE_OPENSSL_ERR_H
|
|
#include <openssl/err.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENSSL_RAND_H
|
|
#include <openssl/rand.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENSSL_CONF_H
|
|
#include <openssl/conf.h>
|
|
#endif
|
|
|
|
#ifdef HAVE_OPENSSL_ENGINE_H
|
|
#include <openssl/engine.h>
|
|
#endif
|
|
|
|
/** fake DSA support for unit tests */
|
|
int fake_dsa = 0;
|
|
/** fake SHA1 support for unit tests */
|
|
int fake_sha1 = 0;
|
|
|
|
/* return size of digest if supported, or 0 otherwise */
|
|
size_t
|
|
nsec3_hash_algo_size_supported(int id)
|
|
{
|
|
switch(id) {
|
|
case NSEC3_HASH_SHA1:
|
|
return SHA_DIGEST_LENGTH;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* perform nsec3 hash. return false on failure */
|
|
int
|
|
secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
|
|
unsigned char* res)
|
|
{
|
|
switch(algo) {
|
|
case NSEC3_HASH_SHA1:
|
|
(void)SHA1(buf, len, res);
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
|
|
{
|
|
(void)SHA256(buf, len, res);
|
|
}
|
|
|
|
/**
|
|
* Return size of DS digest according to its hash algorithm.
|
|
* @param algo: DS digest algo.
|
|
* @return size in bytes of digest, or 0 if not supported.
|
|
*/
|
|
size_t
|
|
ds_digest_size_supported(int algo)
|
|
{
|
|
switch(algo) {
|
|
case LDNS_SHA1:
|
|
#if defined(HAVE_EVP_SHA1) && defined(USE_SHA1)
|
|
return SHA_DIGEST_LENGTH;
|
|
#else
|
|
if(fake_sha1) return 20;
|
|
return 0;
|
|
#endif
|
|
#ifdef HAVE_EVP_SHA256
|
|
case LDNS_SHA256:
|
|
return SHA256_DIGEST_LENGTH;
|
|
#endif
|
|
#ifdef USE_GOST
|
|
case LDNS_HASH_GOST:
|
|
/* we support GOST if it can be loaded */
|
|
(void)sldns_key_EVP_load_gost_id();
|
|
if(EVP_get_digestbyname("md_gost94"))
|
|
return 32;
|
|
else return 0;
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_SHA384:
|
|
return SHA384_DIGEST_LENGTH;
|
|
#endif
|
|
default: break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef USE_GOST
|
|
/** Perform GOST hash */
|
|
static int
|
|
do_gost94(unsigned char* data, size_t len, unsigned char* dest)
|
|
{
|
|
const EVP_MD* md = EVP_get_digestbyname("md_gost94");
|
|
if(!md)
|
|
return 0;
|
|
return sldns_digest_evp(data, (unsigned int)len, dest, md);
|
|
}
|
|
#endif
|
|
|
|
int
|
|
secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
|
|
unsigned char* res)
|
|
{
|
|
switch(algo) {
|
|
#if defined(HAVE_EVP_SHA1) && defined(USE_SHA1)
|
|
case LDNS_SHA1:
|
|
(void)SHA1(buf, len, res);
|
|
return 1;
|
|
#endif
|
|
#ifdef HAVE_EVP_SHA256
|
|
case LDNS_SHA256:
|
|
(void)SHA256(buf, len, res);
|
|
return 1;
|
|
#endif
|
|
#ifdef USE_GOST
|
|
case LDNS_HASH_GOST:
|
|
if(do_gost94(buf, len, res))
|
|
return 1;
|
|
break;
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_SHA384:
|
|
(void)SHA384(buf, len, res);
|
|
return 1;
|
|
#endif
|
|
default:
|
|
verbose(VERB_QUERY, "unknown DS digest algorithm %d",
|
|
algo);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/** return true if DNSKEY algorithm id is supported */
|
|
int
|
|
dnskey_algo_id_is_supported(int id)
|
|
{
|
|
switch(id) {
|
|
case LDNS_RSAMD5:
|
|
/* RFC 6725 deprecates RSAMD5 */
|
|
return 0;
|
|
case LDNS_DSA:
|
|
case LDNS_DSA_NSEC3:
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
return 1;
|
|
#else
|
|
if(fake_dsa || fake_sha1) return 1;
|
|
return 0;
|
|
#endif
|
|
|
|
case LDNS_RSASHA1:
|
|
case LDNS_RSASHA1_NSEC3:
|
|
#ifdef USE_SHA1
|
|
return 1;
|
|
#else
|
|
if(fake_sha1) return 1;
|
|
return 0;
|
|
#endif
|
|
|
|
#if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
|
|
case LDNS_RSASHA256:
|
|
#endif
|
|
#if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
|
|
case LDNS_RSASHA512:
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_ECDSAP256SHA256:
|
|
case LDNS_ECDSAP384SHA384:
|
|
#endif
|
|
#if (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2)) || defined(USE_ECDSA)
|
|
return 1;
|
|
#endif
|
|
|
|
#ifdef USE_GOST
|
|
case LDNS_ECC_GOST:
|
|
/* we support GOST if it can be loaded */
|
|
return sldns_key_EVP_load_gost_id();
|
|
#endif
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Output a libcrypto openssl error to the logfile.
|
|
* @param str: string to add to it.
|
|
* @param e: the error to output, error number from ERR_get_error().
|
|
*/
|
|
static void
|
|
log_crypto_error(const char* str, unsigned long e)
|
|
{
|
|
char buf[128];
|
|
/* or use ERR_error_string if ERR_error_string_n is not avail TODO */
|
|
ERR_error_string_n(e, buf, sizeof(buf));
|
|
/* buf now contains */
|
|
/* error:[error code]:[library name]:[function name]:[reason string] */
|
|
log_err("%s crypto %s", str, buf);
|
|
}
|
|
|
|
#ifdef USE_DSA
|
|
/**
|
|
* Setup DSA key digest in DER encoding ...
|
|
* @param sig: input is signature output alloced ptr (unless failure).
|
|
* caller must free alloced ptr if this routine returns true.
|
|
* @param len: input is initial siglen, output is output len.
|
|
* @return false on failure.
|
|
*/
|
|
static int
|
|
setup_dsa_sig(unsigned char** sig, unsigned int* len)
|
|
{
|
|
unsigned char* orig = *sig;
|
|
unsigned int origlen = *len;
|
|
int newlen;
|
|
BIGNUM *R, *S;
|
|
DSA_SIG *dsasig;
|
|
|
|
/* extract the R and S field from the sig buffer */
|
|
if(origlen < 1 + 2*SHA_DIGEST_LENGTH)
|
|
return 0;
|
|
R = BN_new();
|
|
if(!R) return 0;
|
|
(void) BN_bin2bn(orig + 1, SHA_DIGEST_LENGTH, R);
|
|
S = BN_new();
|
|
if(!S) return 0;
|
|
(void) BN_bin2bn(orig + 21, SHA_DIGEST_LENGTH, S);
|
|
dsasig = DSA_SIG_new();
|
|
if(!dsasig) return 0;
|
|
|
|
#ifdef HAVE_DSA_SIG_SET0
|
|
if(!DSA_SIG_set0(dsasig, R, S)) return 0;
|
|
#else
|
|
dsasig->r = R;
|
|
dsasig->s = S;
|
|
#endif
|
|
*sig = NULL;
|
|
newlen = i2d_DSA_SIG(dsasig, sig);
|
|
if(newlen < 0) {
|
|
DSA_SIG_free(dsasig);
|
|
free(*sig);
|
|
return 0;
|
|
}
|
|
*len = (unsigned int)newlen;
|
|
DSA_SIG_free(dsasig);
|
|
return 1;
|
|
}
|
|
#endif /* USE_DSA */
|
|
|
|
#ifdef USE_ECDSA
|
|
/**
|
|
* Setup the ECDSA signature in its encoding that the library wants.
|
|
* Converts from plain numbers to ASN formatted.
|
|
* @param sig: input is signature, output alloced ptr (unless failure).
|
|
* caller must free alloced ptr if this routine returns true.
|
|
* @param len: input is initial siglen, output is output len.
|
|
* @return false on failure.
|
|
*/
|
|
static int
|
|
setup_ecdsa_sig(unsigned char** sig, unsigned int* len)
|
|
{
|
|
/* convert from two BIGNUMs in the rdata buffer, to ASN notation.
|
|
* ASN preable: 30440220 <R 32bytefor256> 0220 <S 32bytefor256>
|
|
* the '20' is the length of that field (=bnsize).
|
|
i * the '44' is the total remaining length.
|
|
* if negative, start with leading zero.
|
|
* if starts with 00s, remove them from the number.
|
|
*/
|
|
uint8_t pre[] = {0x30, 0x44, 0x02, 0x20};
|
|
int pre_len = 4;
|
|
uint8_t mid[] = {0x02, 0x20};
|
|
int mid_len = 2;
|
|
int raw_sig_len, r_high, s_high, r_rem=0, s_rem=0;
|
|
int bnsize = (int)((*len)/2);
|
|
unsigned char* d = *sig;
|
|
uint8_t* p;
|
|
/* if too short or not even length, fails */
|
|
if(*len < 16 || bnsize*2 != (int)*len)
|
|
return 0;
|
|
|
|
/* strip leading zeroes from r (but not last one) */
|
|
while(r_rem < bnsize-1 && d[r_rem] == 0)
|
|
r_rem++;
|
|
/* strip leading zeroes from s (but not last one) */
|
|
while(s_rem < bnsize-1 && d[bnsize+s_rem] == 0)
|
|
s_rem++;
|
|
|
|
r_high = ((d[0+r_rem]&0x80)?1:0);
|
|
s_high = ((d[bnsize+s_rem]&0x80)?1:0);
|
|
raw_sig_len = pre_len + r_high + bnsize - r_rem + mid_len +
|
|
s_high + bnsize - s_rem;
|
|
*sig = (unsigned char*)malloc((size_t)raw_sig_len);
|
|
if(!*sig)
|
|
return 0;
|
|
p = (uint8_t*)*sig;
|
|
p[0] = pre[0];
|
|
p[1] = (uint8_t)(raw_sig_len-2);
|
|
p[2] = pre[2];
|
|
p[3] = (uint8_t)(bnsize + r_high - r_rem);
|
|
p += 4;
|
|
if(r_high) {
|
|
*p = 0;
|
|
p += 1;
|
|
}
|
|
memmove(p, d+r_rem, (size_t)bnsize-r_rem);
|
|
p += bnsize-r_rem;
|
|
memmove(p, mid, (size_t)mid_len-1);
|
|
p += mid_len-1;
|
|
*p = (uint8_t)(bnsize + s_high - s_rem);
|
|
p += 1;
|
|
if(s_high) {
|
|
*p = 0;
|
|
p += 1;
|
|
}
|
|
memmove(p, d+bnsize+s_rem, (size_t)bnsize-s_rem);
|
|
*len = (unsigned int)raw_sig_len;
|
|
return 1;
|
|
}
|
|
#endif /* USE_ECDSA */
|
|
|
|
#ifdef USE_ECDSA_EVP_WORKAROUND
|
|
static EVP_MD ecdsa_evp_256_md;
|
|
static EVP_MD ecdsa_evp_384_md;
|
|
void ecdsa_evp_workaround_init(void)
|
|
{
|
|
/* openssl before 1.0.0 fixes RSA with the SHA256
|
|
* hash in EVP. We create one for ecdsa_sha256 */
|
|
ecdsa_evp_256_md = *EVP_sha256();
|
|
ecdsa_evp_256_md.required_pkey_type[0] = EVP_PKEY_EC;
|
|
ecdsa_evp_256_md.verify = (void*)ECDSA_verify;
|
|
|
|
ecdsa_evp_384_md = *EVP_sha384();
|
|
ecdsa_evp_384_md.required_pkey_type[0] = EVP_PKEY_EC;
|
|
ecdsa_evp_384_md.verify = (void*)ECDSA_verify;
|
|
}
|
|
#endif /* USE_ECDSA_EVP_WORKAROUND */
|
|
|
|
/**
|
|
* Setup key and digest for verification. Adjust sig if necessary.
|
|
*
|
|
* @param algo: key algorithm
|
|
* @param evp_key: EVP PKEY public key to create.
|
|
* @param digest_type: digest type to use
|
|
* @param key: key to setup for.
|
|
* @param keylen: length of key.
|
|
* @return false on failure.
|
|
*/
|
|
static int
|
|
setup_key_digest(int algo, EVP_PKEY** evp_key, const EVP_MD** digest_type,
|
|
unsigned char* key, size_t keylen)
|
|
{
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
DSA* dsa;
|
|
#endif
|
|
RSA* rsa;
|
|
|
|
switch(algo) {
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
case LDNS_DSA:
|
|
case LDNS_DSA_NSEC3:
|
|
*evp_key = EVP_PKEY_new();
|
|
if(!*evp_key) {
|
|
log_err("verify: malloc failure in crypto");
|
|
return 0;
|
|
}
|
|
dsa = sldns_key_buf2dsa_raw(key, keylen);
|
|
if(!dsa) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"sldns_key_buf2dsa_raw failed");
|
|
return 0;
|
|
}
|
|
if(EVP_PKEY_assign_DSA(*evp_key, dsa) == 0) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"EVP_PKEY_assign_DSA failed");
|
|
return 0;
|
|
}
|
|
#ifdef HAVE_EVP_DSS1
|
|
*digest_type = EVP_dss1();
|
|
#else
|
|
*digest_type = EVP_sha1();
|
|
#endif
|
|
|
|
break;
|
|
#endif /* USE_DSA && USE_SHA1 */
|
|
|
|
#if defined(USE_SHA1) || (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2))
|
|
#ifdef USE_SHA1
|
|
case LDNS_RSASHA1:
|
|
case LDNS_RSASHA1_NSEC3:
|
|
#endif
|
|
#if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
|
|
case LDNS_RSASHA256:
|
|
#endif
|
|
#if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
|
|
case LDNS_RSASHA512:
|
|
#endif
|
|
*evp_key = EVP_PKEY_new();
|
|
if(!*evp_key) {
|
|
log_err("verify: malloc failure in crypto");
|
|
return 0;
|
|
}
|
|
rsa = sldns_key_buf2rsa_raw(key, keylen);
|
|
if(!rsa) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"sldns_key_buf2rsa_raw SHA failed");
|
|
return 0;
|
|
}
|
|
if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"EVP_PKEY_assign_RSA SHA failed");
|
|
return 0;
|
|
}
|
|
|
|
/* select SHA version */
|
|
#if defined(HAVE_EVP_SHA256) && defined(USE_SHA2)
|
|
if(algo == LDNS_RSASHA256)
|
|
*digest_type = EVP_sha256();
|
|
else
|
|
#endif
|
|
#if defined(HAVE_EVP_SHA512) && defined(USE_SHA2)
|
|
if(algo == LDNS_RSASHA512)
|
|
*digest_type = EVP_sha512();
|
|
else
|
|
#endif
|
|
#ifdef USE_SHA1
|
|
*digest_type = EVP_sha1();
|
|
#else
|
|
{ verbose(VERB_QUERY, "no digest available"); return 0; }
|
|
#endif
|
|
break;
|
|
#endif /* defined(USE_SHA1) || (defined(HAVE_EVP_SHA256) && defined(USE_SHA2)) || (defined(HAVE_EVP_SHA512) && defined(USE_SHA2)) */
|
|
|
|
case LDNS_RSAMD5:
|
|
*evp_key = EVP_PKEY_new();
|
|
if(!*evp_key) {
|
|
log_err("verify: malloc failure in crypto");
|
|
return 0;
|
|
}
|
|
rsa = sldns_key_buf2rsa_raw(key, keylen);
|
|
if(!rsa) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"sldns_key_buf2rsa_raw MD5 failed");
|
|
return 0;
|
|
}
|
|
if(EVP_PKEY_assign_RSA(*evp_key, rsa) == 0) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"EVP_PKEY_assign_RSA MD5 failed");
|
|
return 0;
|
|
}
|
|
*digest_type = EVP_md5();
|
|
|
|
break;
|
|
#ifdef USE_GOST
|
|
case LDNS_ECC_GOST:
|
|
*evp_key = sldns_gost2pkey_raw(key, keylen);
|
|
if(!*evp_key) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"sldns_gost2pkey_raw failed");
|
|
return 0;
|
|
}
|
|
*digest_type = EVP_get_digestbyname("md_gost94");
|
|
if(!*digest_type) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"EVP_getdigest md_gost94 failed");
|
|
return 0;
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_ECDSAP256SHA256:
|
|
*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
|
|
LDNS_ECDSAP256SHA256);
|
|
if(!*evp_key) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"sldns_ecdsa2pkey_raw failed");
|
|
return 0;
|
|
}
|
|
#ifdef USE_ECDSA_EVP_WORKAROUND
|
|
*digest_type = &ecdsa_evp_256_md;
|
|
#else
|
|
*digest_type = EVP_sha256();
|
|
#endif
|
|
break;
|
|
case LDNS_ECDSAP384SHA384:
|
|
*evp_key = sldns_ecdsa2pkey_raw(key, keylen,
|
|
LDNS_ECDSAP384SHA384);
|
|
if(!*evp_key) {
|
|
verbose(VERB_QUERY, "verify: "
|
|
"sldns_ecdsa2pkey_raw failed");
|
|
return 0;
|
|
}
|
|
#ifdef USE_ECDSA_EVP_WORKAROUND
|
|
*digest_type = &ecdsa_evp_384_md;
|
|
#else
|
|
*digest_type = EVP_sha384();
|
|
#endif
|
|
break;
|
|
#endif /* USE_ECDSA */
|
|
default:
|
|
verbose(VERB_QUERY, "verify: unknown algorithm %d",
|
|
algo);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Check a canonical sig+rrset and signature against a dnskey
|
|
* @param buf: buffer with data to verify, the first rrsig part and the
|
|
* canonicalized rrset.
|
|
* @param algo: DNSKEY algorithm.
|
|
* @param sigblock: signature rdata field from RRSIG
|
|
* @param sigblock_len: length of sigblock data.
|
|
* @param key: public key data from DNSKEY RR.
|
|
* @param keylen: length of keydata.
|
|
* @param reason: bogus reason in more detail.
|
|
* @return secure if verification succeeded, bogus on crypto failure,
|
|
* unchecked on format errors and alloc failures.
|
|
*/
|
|
enum sec_status
|
|
verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
|
|
unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
|
|
char** reason)
|
|
{
|
|
const EVP_MD *digest_type;
|
|
EVP_MD_CTX* ctx;
|
|
int res, dofree = 0, docrypto_free = 0;
|
|
EVP_PKEY *evp_key = NULL;
|
|
|
|
#ifndef USE_DSA
|
|
if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&(fake_dsa||fake_sha1))
|
|
return sec_status_secure;
|
|
#endif
|
|
#ifndef USE_SHA1
|
|
if(fake_sha1 && (algo == LDNS_DSA || algo == LDNS_DSA_NSEC3 || algo == LDNS_RSASHA1 || algo == LDNS_RSASHA1_NSEC3))
|
|
return sec_status_secure;
|
|
#endif
|
|
|
|
if(!setup_key_digest(algo, &evp_key, &digest_type, key, keylen)) {
|
|
verbose(VERB_QUERY, "verify: failed to setup key");
|
|
*reason = "use of key for crypto failed";
|
|
EVP_PKEY_free(evp_key);
|
|
return sec_status_bogus;
|
|
}
|
|
#ifdef USE_DSA
|
|
/* if it is a DSA signature in bind format, convert to DER format */
|
|
if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3) &&
|
|
sigblock_len == 1+2*SHA_DIGEST_LENGTH) {
|
|
if(!setup_dsa_sig(&sigblock, &sigblock_len)) {
|
|
verbose(VERB_QUERY, "verify: failed to setup DSA sig");
|
|
*reason = "use of key for DSA crypto failed";
|
|
EVP_PKEY_free(evp_key);
|
|
return sec_status_bogus;
|
|
}
|
|
docrypto_free = 1;
|
|
}
|
|
#endif
|
|
#if defined(USE_ECDSA) && defined(USE_DSA)
|
|
else
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
if(algo == LDNS_ECDSAP256SHA256 || algo == LDNS_ECDSAP384SHA384) {
|
|
/* EVP uses ASN prefix on sig, which is not in the wire data */
|
|
if(!setup_ecdsa_sig(&sigblock, &sigblock_len)) {
|
|
verbose(VERB_QUERY, "verify: failed to setup ECDSA sig");
|
|
*reason = "use of signature for ECDSA crypto failed";
|
|
EVP_PKEY_free(evp_key);
|
|
return sec_status_bogus;
|
|
}
|
|
dofree = 1;
|
|
}
|
|
#endif /* USE_ECDSA */
|
|
|
|
/* do the signature cryptography work */
|
|
#ifdef HAVE_EVP_MD_CTX_NEW
|
|
ctx = EVP_MD_CTX_new();
|
|
#else
|
|
ctx = (EVP_MD_CTX*)malloc(sizeof(*ctx));
|
|
if(ctx) EVP_MD_CTX_init(ctx);
|
|
#endif
|
|
if(!ctx) {
|
|
log_err("EVP_MD_CTX_new: malloc failure");
|
|
EVP_PKEY_free(evp_key);
|
|
if(dofree) free(sigblock);
|
|
else if(docrypto_free) OPENSSL_free(sigblock);
|
|
return sec_status_unchecked;
|
|
}
|
|
if(EVP_VerifyInit(ctx, digest_type) == 0) {
|
|
verbose(VERB_QUERY, "verify: EVP_VerifyInit failed");
|
|
EVP_MD_CTX_destroy(ctx);
|
|
EVP_PKEY_free(evp_key);
|
|
if(dofree) free(sigblock);
|
|
else if(docrypto_free) OPENSSL_free(sigblock);
|
|
return sec_status_unchecked;
|
|
}
|
|
if(EVP_VerifyUpdate(ctx, (unsigned char*)sldns_buffer_begin(buf),
|
|
(unsigned int)sldns_buffer_limit(buf)) == 0) {
|
|
verbose(VERB_QUERY, "verify: EVP_VerifyUpdate failed");
|
|
EVP_MD_CTX_destroy(ctx);
|
|
EVP_PKEY_free(evp_key);
|
|
if(dofree) free(sigblock);
|
|
else if(docrypto_free) OPENSSL_free(sigblock);
|
|
return sec_status_unchecked;
|
|
}
|
|
|
|
res = EVP_VerifyFinal(ctx, sigblock, sigblock_len, evp_key);
|
|
#ifdef HAVE_EVP_MD_CTX_NEW
|
|
EVP_MD_CTX_destroy(ctx);
|
|
#else
|
|
EVP_MD_CTX_cleanup(ctx);
|
|
free(ctx);
|
|
#endif
|
|
EVP_PKEY_free(evp_key);
|
|
|
|
if(dofree) free(sigblock);
|
|
else if(docrypto_free) OPENSSL_free(sigblock);
|
|
|
|
if(res == 1) {
|
|
return sec_status_secure;
|
|
} else if(res == 0) {
|
|
verbose(VERB_QUERY, "verify: signature mismatch");
|
|
*reason = "signature crypto failed";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
log_crypto_error("verify:", ERR_get_error());
|
|
return sec_status_unchecked;
|
|
}
|
|
|
|
/**************************************************/
|
|
#elif defined(HAVE_NSS)
|
|
/* libnss implementation */
|
|
/* nss3 */
|
|
#include "sechash.h"
|
|
#include "pk11pub.h"
|
|
#include "keyhi.h"
|
|
#include "secerr.h"
|
|
#include "cryptohi.h"
|
|
/* nspr4 */
|
|
#include "prerror.h"
|
|
|
|
/* return size of digest if supported, or 0 otherwise */
|
|
size_t
|
|
nsec3_hash_algo_size_supported(int id)
|
|
{
|
|
switch(id) {
|
|
case NSEC3_HASH_SHA1:
|
|
return SHA1_LENGTH;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* perform nsec3 hash. return false on failure */
|
|
int
|
|
secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
|
|
unsigned char* res)
|
|
{
|
|
switch(algo) {
|
|
case NSEC3_HASH_SHA1:
|
|
(void)HASH_HashBuf(HASH_AlgSHA1, res, buf, (unsigned long)len);
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
|
|
{
|
|
(void)HASH_HashBuf(HASH_AlgSHA256, res, buf, (unsigned long)len);
|
|
}
|
|
|
|
size_t
|
|
ds_digest_size_supported(int algo)
|
|
{
|
|
/* uses libNSS */
|
|
switch(algo) {
|
|
#ifdef USE_SHA1
|
|
case LDNS_SHA1:
|
|
return SHA1_LENGTH;
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
case LDNS_SHA256:
|
|
return SHA256_LENGTH;
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_SHA384:
|
|
return SHA384_LENGTH;
|
|
#endif
|
|
/* GOST not supported in NSS */
|
|
case LDNS_HASH_GOST:
|
|
default: break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
|
|
unsigned char* res)
|
|
{
|
|
/* uses libNSS */
|
|
switch(algo) {
|
|
#ifdef USE_SHA1
|
|
case LDNS_SHA1:
|
|
return HASH_HashBuf(HASH_AlgSHA1, res, buf, len)
|
|
== SECSuccess;
|
|
#endif
|
|
#if defined(USE_SHA2)
|
|
case LDNS_SHA256:
|
|
return HASH_HashBuf(HASH_AlgSHA256, res, buf, len)
|
|
== SECSuccess;
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_SHA384:
|
|
return HASH_HashBuf(HASH_AlgSHA384, res, buf, len)
|
|
== SECSuccess;
|
|
#endif
|
|
case LDNS_HASH_GOST:
|
|
default:
|
|
verbose(VERB_QUERY, "unknown DS digest algorithm %d",
|
|
algo);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
dnskey_algo_id_is_supported(int id)
|
|
{
|
|
/* uses libNSS */
|
|
switch(id) {
|
|
case LDNS_RSAMD5:
|
|
/* RFC 6725 deprecates RSAMD5 */
|
|
return 0;
|
|
#if defined(USE_SHA1) || defined(USE_SHA2)
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
case LDNS_DSA:
|
|
case LDNS_DSA_NSEC3:
|
|
#endif
|
|
#ifdef USE_SHA1
|
|
case LDNS_RSASHA1:
|
|
case LDNS_RSASHA1_NSEC3:
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
case LDNS_RSASHA256:
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
case LDNS_RSASHA512:
|
|
#endif
|
|
return 1;
|
|
#endif /* SHA1 or SHA2 */
|
|
|
|
#ifdef USE_ECDSA
|
|
case LDNS_ECDSAP256SHA256:
|
|
case LDNS_ECDSAP384SHA384:
|
|
return PK11_TokenExists(CKM_ECDSA);
|
|
#endif
|
|
case LDNS_ECC_GOST:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* return a new public key for NSS */
|
|
static SECKEYPublicKey* nss_key_create(KeyType ktype)
|
|
{
|
|
SECKEYPublicKey* key;
|
|
PLArenaPool* arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
|
|
if(!arena) {
|
|
log_err("out of memory, PORT_NewArena failed");
|
|
return NULL;
|
|
}
|
|
key = PORT_ArenaZNew(arena, SECKEYPublicKey);
|
|
if(!key) {
|
|
log_err("out of memory, PORT_ArenaZNew failed");
|
|
PORT_FreeArena(arena, PR_FALSE);
|
|
return NULL;
|
|
}
|
|
key->arena = arena;
|
|
key->keyType = ktype;
|
|
key->pkcs11Slot = NULL;
|
|
key->pkcs11ID = CK_INVALID_HANDLE;
|
|
return key;
|
|
}
|
|
|
|
static SECKEYPublicKey* nss_buf2ecdsa(unsigned char* key, size_t len, int algo)
|
|
{
|
|
SECKEYPublicKey* pk;
|
|
SECItem pub = {siBuffer, NULL, 0};
|
|
SECItem params = {siBuffer, NULL, 0};
|
|
static unsigned char param256[] = {
|
|
/* OBJECTIDENTIFIER 1.2.840.10045.3.1.7 (P-256)
|
|
* {iso(1) member-body(2) us(840) ansi-x962(10045) curves(3) prime(1) prime256v1(7)} */
|
|
0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07
|
|
};
|
|
static unsigned char param384[] = {
|
|
/* OBJECTIDENTIFIER 1.3.132.0.34 (P-384)
|
|
* {iso(1) identified-organization(3) certicom(132) curve(0) ansip384r1(34)} */
|
|
0x06, 0x05, 0x2b, 0x81, 0x04, 0x00, 0x22
|
|
};
|
|
unsigned char buf[256+2]; /* sufficient for 2*384/8+1 */
|
|
|
|
/* check length, which uncompressed must be 2 bignums */
|
|
if(algo == LDNS_ECDSAP256SHA256) {
|
|
if(len != 2*256/8) return NULL;
|
|
/* ECCurve_X9_62_PRIME_256V1 */
|
|
} else if(algo == LDNS_ECDSAP384SHA384) {
|
|
if(len != 2*384/8) return NULL;
|
|
/* ECCurve_X9_62_PRIME_384R1 */
|
|
} else return NULL;
|
|
|
|
buf[0] = 0x04; /* POINT_FORM_UNCOMPRESSED */
|
|
memmove(buf+1, key, len);
|
|
pub.data = buf;
|
|
pub.len = len+1;
|
|
if(algo == LDNS_ECDSAP256SHA256) {
|
|
params.data = param256;
|
|
params.len = sizeof(param256);
|
|
} else {
|
|
params.data = param384;
|
|
params.len = sizeof(param384);
|
|
}
|
|
|
|
pk = nss_key_create(ecKey);
|
|
if(!pk)
|
|
return NULL;
|
|
pk->u.ec.size = (len/2)*8;
|
|
if(SECITEM_CopyItem(pk->arena, &pk->u.ec.publicValue, &pub)) {
|
|
SECKEY_DestroyPublicKey(pk);
|
|
return NULL;
|
|
}
|
|
if(SECITEM_CopyItem(pk->arena, &pk->u.ec.DEREncodedParams, ¶ms)) {
|
|
SECKEY_DestroyPublicKey(pk);
|
|
return NULL;
|
|
}
|
|
|
|
return pk;
|
|
}
|
|
|
|
static SECKEYPublicKey* nss_buf2dsa(unsigned char* key, size_t len)
|
|
{
|
|
SECKEYPublicKey* pk;
|
|
uint8_t T;
|
|
uint16_t length;
|
|
uint16_t offset;
|
|
SECItem Q = {siBuffer, NULL, 0};
|
|
SECItem P = {siBuffer, NULL, 0};
|
|
SECItem G = {siBuffer, NULL, 0};
|
|
SECItem Y = {siBuffer, NULL, 0};
|
|
|
|
if(len == 0)
|
|
return NULL;
|
|
T = (uint8_t)key[0];
|
|
length = (64 + T * 8);
|
|
offset = 1;
|
|
|
|
if (T > 8) {
|
|
return NULL;
|
|
}
|
|
if(len < (size_t)1 + SHA1_LENGTH + 3*length)
|
|
return NULL;
|
|
|
|
Q.data = key+offset;
|
|
Q.len = SHA1_LENGTH;
|
|
offset += SHA1_LENGTH;
|
|
|
|
P.data = key+offset;
|
|
P.len = length;
|
|
offset += length;
|
|
|
|
G.data = key+offset;
|
|
G.len = length;
|
|
offset += length;
|
|
|
|
Y.data = key+offset;
|
|
Y.len = length;
|
|
offset += length;
|
|
|
|
pk = nss_key_create(dsaKey);
|
|
if(!pk)
|
|
return NULL;
|
|
if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.prime, &P)) {
|
|
SECKEY_DestroyPublicKey(pk);
|
|
return NULL;
|
|
}
|
|
if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.subPrime, &Q)) {
|
|
SECKEY_DestroyPublicKey(pk);
|
|
return NULL;
|
|
}
|
|
if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.params.base, &G)) {
|
|
SECKEY_DestroyPublicKey(pk);
|
|
return NULL;
|
|
}
|
|
if(SECITEM_CopyItem(pk->arena, &pk->u.dsa.publicValue, &Y)) {
|
|
SECKEY_DestroyPublicKey(pk);
|
|
return NULL;
|
|
}
|
|
return pk;
|
|
}
|
|
|
|
static SECKEYPublicKey* nss_buf2rsa(unsigned char* key, size_t len)
|
|
{
|
|
SECKEYPublicKey* pk;
|
|
uint16_t exp;
|
|
uint16_t offset;
|
|
uint16_t int16;
|
|
SECItem modulus = {siBuffer, NULL, 0};
|
|
SECItem exponent = {siBuffer, NULL, 0};
|
|
if(len == 0)
|
|
return NULL;
|
|
if(key[0] == 0) {
|
|
if(len < 3)
|
|
return NULL;
|
|
/* the exponent is too large so it's places further */
|
|
memmove(&int16, key+1, 2);
|
|
exp = ntohs(int16);
|
|
offset = 3;
|
|
} else {
|
|
exp = key[0];
|
|
offset = 1;
|
|
}
|
|
|
|
/* key length at least one */
|
|
if(len < (size_t)offset + exp + 1)
|
|
return NULL;
|
|
|
|
exponent.data = key+offset;
|
|
exponent.len = exp;
|
|
offset += exp;
|
|
modulus.data = key+offset;
|
|
modulus.len = (len - offset);
|
|
|
|
pk = nss_key_create(rsaKey);
|
|
if(!pk)
|
|
return NULL;
|
|
if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.modulus, &modulus)) {
|
|
SECKEY_DestroyPublicKey(pk);
|
|
return NULL;
|
|
}
|
|
if(SECITEM_CopyItem(pk->arena, &pk->u.rsa.publicExponent, &exponent)) {
|
|
SECKEY_DestroyPublicKey(pk);
|
|
return NULL;
|
|
}
|
|
return pk;
|
|
}
|
|
|
|
/**
|
|
* Setup key and digest for verification. Adjust sig if necessary.
|
|
*
|
|
* @param algo: key algorithm
|
|
* @param evp_key: EVP PKEY public key to create.
|
|
* @param digest_type: digest type to use
|
|
* @param key: key to setup for.
|
|
* @param keylen: length of key.
|
|
* @param prefix: if returned, the ASN prefix for the hashblob.
|
|
* @param prefixlen: length of the prefix.
|
|
* @return false on failure.
|
|
*/
|
|
static int
|
|
nss_setup_key_digest(int algo, SECKEYPublicKey** pubkey, HASH_HashType* htype,
|
|
unsigned char* key, size_t keylen, unsigned char** prefix,
|
|
size_t* prefixlen)
|
|
{
|
|
/* uses libNSS */
|
|
|
|
/* hash prefix for md5, RFC2537 */
|
|
static unsigned char p_md5[] = {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a,
|
|
0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10};
|
|
/* hash prefix to prepend to hash output, from RFC3110 */
|
|
static unsigned char p_sha1[] = {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2B,
|
|
0x0E, 0x03, 0x02, 0x1A, 0x05, 0x00, 0x04, 0x14};
|
|
/* from RFC5702 */
|
|
static unsigned char p_sha256[] = {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20};
|
|
static unsigned char p_sha512[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40};
|
|
/* from RFC6234 */
|
|
/* for future RSASHA384 ..
|
|
static unsigned char p_sha384[] = {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60,
|
|
0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30};
|
|
*/
|
|
|
|
switch(algo) {
|
|
|
|
#if defined(USE_SHA1) || defined(USE_SHA2)
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
case LDNS_DSA:
|
|
case LDNS_DSA_NSEC3:
|
|
*pubkey = nss_buf2dsa(key, keylen);
|
|
if(!*pubkey) {
|
|
log_err("verify: malloc failure in crypto");
|
|
return 0;
|
|
}
|
|
*htype = HASH_AlgSHA1;
|
|
/* no prefix for DSA verification */
|
|
break;
|
|
#endif
|
|
#ifdef USE_SHA1
|
|
case LDNS_RSASHA1:
|
|
case LDNS_RSASHA1_NSEC3:
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
case LDNS_RSASHA256:
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
case LDNS_RSASHA512:
|
|
#endif
|
|
*pubkey = nss_buf2rsa(key, keylen);
|
|
if(!*pubkey) {
|
|
log_err("verify: malloc failure in crypto");
|
|
return 0;
|
|
}
|
|
/* select SHA version */
|
|
#ifdef USE_SHA2
|
|
if(algo == LDNS_RSASHA256) {
|
|
*htype = HASH_AlgSHA256;
|
|
*prefix = p_sha256;
|
|
*prefixlen = sizeof(p_sha256);
|
|
} else
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
if(algo == LDNS_RSASHA512) {
|
|
*htype = HASH_AlgSHA512;
|
|
*prefix = p_sha512;
|
|
*prefixlen = sizeof(p_sha512);
|
|
} else
|
|
#endif
|
|
#ifdef USE_SHA1
|
|
{
|
|
*htype = HASH_AlgSHA1;
|
|
*prefix = p_sha1;
|
|
*prefixlen = sizeof(p_sha1);
|
|
}
|
|
#else
|
|
{
|
|
verbose(VERB_QUERY, "verify: no digest algo");
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
break;
|
|
#endif /* SHA1 or SHA2 */
|
|
|
|
case LDNS_RSAMD5:
|
|
*pubkey = nss_buf2rsa(key, keylen);
|
|
if(!*pubkey) {
|
|
log_err("verify: malloc failure in crypto");
|
|
return 0;
|
|
}
|
|
*htype = HASH_AlgMD5;
|
|
*prefix = p_md5;
|
|
*prefixlen = sizeof(p_md5);
|
|
|
|
break;
|
|
#ifdef USE_ECDSA
|
|
case LDNS_ECDSAP256SHA256:
|
|
*pubkey = nss_buf2ecdsa(key, keylen,
|
|
LDNS_ECDSAP256SHA256);
|
|
if(!*pubkey) {
|
|
log_err("verify: malloc failure in crypto");
|
|
return 0;
|
|
}
|
|
*htype = HASH_AlgSHA256;
|
|
/* no prefix for DSA verification */
|
|
break;
|
|
case LDNS_ECDSAP384SHA384:
|
|
*pubkey = nss_buf2ecdsa(key, keylen,
|
|
LDNS_ECDSAP384SHA384);
|
|
if(!*pubkey) {
|
|
log_err("verify: malloc failure in crypto");
|
|
return 0;
|
|
}
|
|
*htype = HASH_AlgSHA384;
|
|
/* no prefix for DSA verification */
|
|
break;
|
|
#endif /* USE_ECDSA */
|
|
case LDNS_ECC_GOST:
|
|
default:
|
|
verbose(VERB_QUERY, "verify: unknown algorithm %d",
|
|
algo);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Check a canonical sig+rrset and signature against a dnskey
|
|
* @param buf: buffer with data to verify, the first rrsig part and the
|
|
* canonicalized rrset.
|
|
* @param algo: DNSKEY algorithm.
|
|
* @param sigblock: signature rdata field from RRSIG
|
|
* @param sigblock_len: length of sigblock data.
|
|
* @param key: public key data from DNSKEY RR.
|
|
* @param keylen: length of keydata.
|
|
* @param reason: bogus reason in more detail.
|
|
* @return secure if verification succeeded, bogus on crypto failure,
|
|
* unchecked on format errors and alloc failures.
|
|
*/
|
|
enum sec_status
|
|
verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
|
|
unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
|
|
char** reason)
|
|
{
|
|
/* uses libNSS */
|
|
/* large enough for the different hashes */
|
|
unsigned char hash[HASH_LENGTH_MAX];
|
|
unsigned char hash2[HASH_LENGTH_MAX*2];
|
|
HASH_HashType htype = 0;
|
|
SECKEYPublicKey* pubkey = NULL;
|
|
SECItem secsig = {siBuffer, sigblock, sigblock_len};
|
|
SECItem sechash = {siBuffer, hash, 0};
|
|
SECStatus res;
|
|
unsigned char* prefix = NULL; /* prefix for hash, RFC3110, RFC5702 */
|
|
size_t prefixlen = 0;
|
|
int err;
|
|
|
|
if(!nss_setup_key_digest(algo, &pubkey, &htype, key, keylen,
|
|
&prefix, &prefixlen)) {
|
|
verbose(VERB_QUERY, "verify: failed to setup key");
|
|
*reason = "use of key for crypto failed";
|
|
SECKEY_DestroyPublicKey(pubkey);
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
/* need to convert DSA, ECDSA signatures? */
|
|
if((algo == LDNS_DSA || algo == LDNS_DSA_NSEC3)) {
|
|
if(sigblock_len == 1+2*SHA1_LENGTH) {
|
|
secsig.data ++;
|
|
secsig.len --;
|
|
} else {
|
|
SECItem* p = DSAU_DecodeDerSig(&secsig);
|
|
if(!p) {
|
|
verbose(VERB_QUERY, "verify: failed DER decode");
|
|
*reason = "signature DER decode failed";
|
|
SECKEY_DestroyPublicKey(pubkey);
|
|
return sec_status_bogus;
|
|
}
|
|
if(SECITEM_CopyItem(pubkey->arena, &secsig, p)) {
|
|
log_err("alloc failure in DER decode");
|
|
SECKEY_DestroyPublicKey(pubkey);
|
|
SECITEM_FreeItem(p, PR_TRUE);
|
|
return sec_status_unchecked;
|
|
}
|
|
SECITEM_FreeItem(p, PR_TRUE);
|
|
}
|
|
}
|
|
#endif /* USE_DSA */
|
|
|
|
/* do the signature cryptography work */
|
|
/* hash the data */
|
|
sechash.len = HASH_ResultLen(htype);
|
|
if(sechash.len > sizeof(hash)) {
|
|
verbose(VERB_QUERY, "verify: hash too large for buffer");
|
|
SECKEY_DestroyPublicKey(pubkey);
|
|
return sec_status_unchecked;
|
|
}
|
|
if(HASH_HashBuf(htype, hash, (unsigned char*)sldns_buffer_begin(buf),
|
|
(unsigned int)sldns_buffer_limit(buf)) != SECSuccess) {
|
|
verbose(VERB_QUERY, "verify: HASH_HashBuf failed");
|
|
SECKEY_DestroyPublicKey(pubkey);
|
|
return sec_status_unchecked;
|
|
}
|
|
if(prefix) {
|
|
int hashlen = sechash.len;
|
|
if(prefixlen+hashlen > sizeof(hash2)) {
|
|
verbose(VERB_QUERY, "verify: hashprefix too large");
|
|
SECKEY_DestroyPublicKey(pubkey);
|
|
return sec_status_unchecked;
|
|
}
|
|
sechash.data = hash2;
|
|
sechash.len = prefixlen+hashlen;
|
|
memcpy(sechash.data, prefix, prefixlen);
|
|
memmove(sechash.data+prefixlen, hash, hashlen);
|
|
}
|
|
|
|
/* verify the signature */
|
|
res = PK11_Verify(pubkey, &secsig, &sechash, NULL /*wincx*/);
|
|
SECKEY_DestroyPublicKey(pubkey);
|
|
|
|
if(res == SECSuccess) {
|
|
return sec_status_secure;
|
|
}
|
|
err = PORT_GetError();
|
|
if(err != SEC_ERROR_BAD_SIGNATURE) {
|
|
/* failed to verify */
|
|
verbose(VERB_QUERY, "verify: PK11_Verify failed: %s",
|
|
PORT_ErrorToString(err));
|
|
/* if it is not supported, like ECC is removed, we get,
|
|
* SEC_ERROR_NO_MODULE */
|
|
if(err == SEC_ERROR_NO_MODULE)
|
|
return sec_status_unchecked;
|
|
/* but other errors are commonly returned
|
|
* for a bad signature from NSS. Thus we return bogus,
|
|
* not unchecked */
|
|
*reason = "signature crypto failed";
|
|
return sec_status_bogus;
|
|
}
|
|
verbose(VERB_QUERY, "verify: signature mismatch: %s",
|
|
PORT_ErrorToString(err));
|
|
*reason = "signature crypto failed";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
#elif defined(HAVE_NETTLE)
|
|
|
|
#include "sha.h"
|
|
#include "bignum.h"
|
|
#include "macros.h"
|
|
#include "rsa.h"
|
|
#include "dsa.h"
|
|
#ifdef HAVE_NETTLE_DSA_COMPAT_H
|
|
#include "dsa-compat.h"
|
|
#endif
|
|
#include "asn1.h"
|
|
#ifdef USE_ECDSA
|
|
#include "ecdsa.h"
|
|
#include "ecc-curve.h"
|
|
#endif
|
|
|
|
static int
|
|
_digest_nettle(int algo, uint8_t* buf, size_t len,
|
|
unsigned char* res)
|
|
{
|
|
switch(algo) {
|
|
case SHA1_DIGEST_SIZE:
|
|
{
|
|
struct sha1_ctx ctx;
|
|
sha1_init(&ctx);
|
|
sha1_update(&ctx, len, buf);
|
|
sha1_digest(&ctx, SHA1_DIGEST_SIZE, res);
|
|
return 1;
|
|
}
|
|
case SHA256_DIGEST_SIZE:
|
|
{
|
|
struct sha256_ctx ctx;
|
|
sha256_init(&ctx);
|
|
sha256_update(&ctx, len, buf);
|
|
sha256_digest(&ctx, SHA256_DIGEST_SIZE, res);
|
|
return 1;
|
|
}
|
|
case SHA384_DIGEST_SIZE:
|
|
{
|
|
struct sha384_ctx ctx;
|
|
sha384_init(&ctx);
|
|
sha384_update(&ctx, len, buf);
|
|
sha384_digest(&ctx, SHA384_DIGEST_SIZE, res);
|
|
return 1;
|
|
}
|
|
case SHA512_DIGEST_SIZE:
|
|
{
|
|
struct sha512_ctx ctx;
|
|
sha512_init(&ctx);
|
|
sha512_update(&ctx, len, buf);
|
|
sha512_digest(&ctx, SHA512_DIGEST_SIZE, res);
|
|
return 1;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* return size of digest if supported, or 0 otherwise */
|
|
size_t
|
|
nsec3_hash_algo_size_supported(int id)
|
|
{
|
|
switch(id) {
|
|
case NSEC3_HASH_SHA1:
|
|
return SHA1_DIGEST_SIZE;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* perform nsec3 hash. return false on failure */
|
|
int
|
|
secalgo_nsec3_hash(int algo, unsigned char* buf, size_t len,
|
|
unsigned char* res)
|
|
{
|
|
switch(algo) {
|
|
case NSEC3_HASH_SHA1:
|
|
return _digest_nettle(SHA1_DIGEST_SIZE, (uint8_t*)buf, len,
|
|
res);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void
|
|
secalgo_hash_sha256(unsigned char* buf, size_t len, unsigned char* res)
|
|
{
|
|
_digest_nettle(SHA256_DIGEST_SIZE, (uint8_t*)buf, len, res);
|
|
}
|
|
|
|
/**
|
|
* Return size of DS digest according to its hash algorithm.
|
|
* @param algo: DS digest algo.
|
|
* @return size in bytes of digest, or 0 if not supported.
|
|
*/
|
|
size_t
|
|
ds_digest_size_supported(int algo)
|
|
{
|
|
switch(algo) {
|
|
case LDNS_SHA1:
|
|
#ifdef USE_SHA1
|
|
return SHA1_DIGEST_SIZE;
|
|
#else
|
|
if(fake_sha1) return 20;
|
|
return 0;
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
case LDNS_SHA256:
|
|
return SHA256_DIGEST_SIZE;
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_SHA384:
|
|
return SHA384_DIGEST_SIZE;
|
|
#endif
|
|
/* GOST not supported */
|
|
case LDNS_HASH_GOST:
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
secalgo_ds_digest(int algo, unsigned char* buf, size_t len,
|
|
unsigned char* res)
|
|
{
|
|
switch(algo) {
|
|
#ifdef USE_SHA1
|
|
case LDNS_SHA1:
|
|
return _digest_nettle(SHA1_DIGEST_SIZE, buf, len, res);
|
|
#endif
|
|
#if defined(USE_SHA2)
|
|
case LDNS_SHA256:
|
|
return _digest_nettle(SHA256_DIGEST_SIZE, buf, len, res);
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_SHA384:
|
|
return _digest_nettle(SHA384_DIGEST_SIZE, buf, len, res);
|
|
|
|
#endif
|
|
case LDNS_HASH_GOST:
|
|
default:
|
|
verbose(VERB_QUERY, "unknown DS digest algorithm %d",
|
|
algo);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
dnskey_algo_id_is_supported(int id)
|
|
{
|
|
/* uses libnettle */
|
|
switch(id) {
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
case LDNS_DSA:
|
|
case LDNS_DSA_NSEC3:
|
|
#endif
|
|
#ifdef USE_SHA1
|
|
case LDNS_RSASHA1:
|
|
case LDNS_RSASHA1_NSEC3:
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
case LDNS_RSASHA256:
|
|
case LDNS_RSASHA512:
|
|
#endif
|
|
#ifdef USE_ECDSA
|
|
case LDNS_ECDSAP256SHA256:
|
|
case LDNS_ECDSAP384SHA384:
|
|
#endif
|
|
return 1;
|
|
case LDNS_RSAMD5: /* RFC 6725 deprecates RSAMD5 */
|
|
case LDNS_ECC_GOST:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
static char *
|
|
_verify_nettle_dsa(sldns_buffer* buf, unsigned char* sigblock,
|
|
unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
|
|
{
|
|
uint8_t digest[SHA1_DIGEST_SIZE];
|
|
uint8_t key_t_value;
|
|
int res = 0;
|
|
size_t offset;
|
|
struct dsa_public_key pubkey;
|
|
struct dsa_signature signature;
|
|
unsigned int expected_len;
|
|
|
|
/* Extract DSA signature from the record */
|
|
nettle_dsa_signature_init(&signature);
|
|
/* Signature length: 41 bytes - RFC 2536 sec. 3 */
|
|
if(sigblock_len == 41) {
|
|
if(key[0] != sigblock[0])
|
|
return "invalid T value in DSA signature or pubkey";
|
|
nettle_mpz_set_str_256_u(signature.r, 20, sigblock+1);
|
|
nettle_mpz_set_str_256_u(signature.s, 20, sigblock+1+20);
|
|
} else {
|
|
/* DER encoded, decode the ASN1 notated R and S bignums */
|
|
/* SEQUENCE { r INTEGER, s INTEGER } */
|
|
struct asn1_der_iterator i, seq;
|
|
if(asn1_der_iterator_first(&i, sigblock_len,
|
|
(uint8_t*)sigblock) != ASN1_ITERATOR_CONSTRUCTED
|
|
|| i.type != ASN1_SEQUENCE)
|
|
return "malformed DER encoded DSA signature";
|
|
/* decode this element of i using the seq iterator */
|
|
if(asn1_der_decode_constructed(&i, &seq) !=
|
|
ASN1_ITERATOR_PRIMITIVE || seq.type != ASN1_INTEGER)
|
|
return "malformed DER encoded DSA signature";
|
|
if(!asn1_der_get_bignum(&seq, signature.r, 20*8))
|
|
return "malformed DER encoded DSA signature";
|
|
if(asn1_der_iterator_next(&seq) != ASN1_ITERATOR_PRIMITIVE
|
|
|| seq.type != ASN1_INTEGER)
|
|
return "malformed DER encoded DSA signature";
|
|
if(!asn1_der_get_bignum(&seq, signature.s, 20*8))
|
|
return "malformed DER encoded DSA signature";
|
|
if(asn1_der_iterator_next(&i) != ASN1_ITERATOR_END)
|
|
return "malformed DER encoded DSA signature";
|
|
}
|
|
|
|
/* Validate T values constraints - RFC 2536 sec. 2 & sec. 3 */
|
|
key_t_value = key[0];
|
|
if (key_t_value > 8) {
|
|
return "invalid T value in DSA pubkey";
|
|
}
|
|
|
|
/* Pubkey minimum length: 21 bytes - RFC 2536 sec. 2 */
|
|
if (keylen < 21) {
|
|
return "DSA pubkey too short";
|
|
}
|
|
|
|
expected_len = 1 + /* T */
|
|
20 + /* Q */
|
|
(64 + key_t_value*8) + /* P */
|
|
(64 + key_t_value*8) + /* G */
|
|
(64 + key_t_value*8); /* Y */
|
|
if (keylen != expected_len ) {
|
|
return "invalid DSA pubkey length";
|
|
}
|
|
|
|
/* Extract DSA pubkey from the record */
|
|
nettle_dsa_public_key_init(&pubkey);
|
|
offset = 1;
|
|
nettle_mpz_set_str_256_u(pubkey.q, 20, key+offset);
|
|
offset += 20;
|
|
nettle_mpz_set_str_256_u(pubkey.p, (64 + key_t_value*8), key+offset);
|
|
offset += (64 + key_t_value*8);
|
|
nettle_mpz_set_str_256_u(pubkey.g, (64 + key_t_value*8), key+offset);
|
|
offset += (64 + key_t_value*8);
|
|
nettle_mpz_set_str_256_u(pubkey.y, (64 + key_t_value*8), key+offset);
|
|
|
|
/* Digest content of "buf" and verify its DSA signature in "sigblock"*/
|
|
res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
|
|
(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
|
|
res &= dsa_sha1_verify_digest(&pubkey, digest, &signature);
|
|
|
|
/* Clear and return */
|
|
nettle_dsa_signature_clear(&signature);
|
|
nettle_dsa_public_key_clear(&pubkey);
|
|
if (!res)
|
|
return "DSA signature verification failed";
|
|
else
|
|
return NULL;
|
|
}
|
|
#endif /* USE_DSA */
|
|
|
|
static char *
|
|
_verify_nettle_rsa(sldns_buffer* buf, unsigned int digest_size, char* sigblock,
|
|
unsigned int sigblock_len, uint8_t* key, unsigned int keylen)
|
|
{
|
|
uint16_t exp_len = 0;
|
|
size_t exp_offset = 0, mod_offset = 0;
|
|
struct rsa_public_key pubkey;
|
|
mpz_t signature;
|
|
int res = 0;
|
|
|
|
/* RSA pubkey parsing as per RFC 3110 sec. 2 */
|
|
if( keylen <= 1) {
|
|
return "null RSA key";
|
|
}
|
|
if (key[0] != 0) {
|
|
/* 1-byte length */
|
|
exp_len = key[0];
|
|
exp_offset = 1;
|
|
} else {
|
|
/* 1-byte NUL + 2-bytes exponent length */
|
|
if (keylen < 3) {
|
|
return "incorrect RSA key length";
|
|
}
|
|
exp_len = READ_UINT16(key+1);
|
|
if (exp_len == 0)
|
|
return "null RSA exponent length";
|
|
exp_offset = 3;
|
|
}
|
|
/* Check that we are not over-running input length */
|
|
if (keylen < exp_offset + exp_len + 1) {
|
|
return "RSA key content shorter than expected";
|
|
}
|
|
mod_offset = exp_offset + exp_len;
|
|
nettle_rsa_public_key_init(&pubkey);
|
|
pubkey.size = keylen - mod_offset;
|
|
nettle_mpz_set_str_256_u(pubkey.e, exp_len, &key[exp_offset]);
|
|
nettle_mpz_set_str_256_u(pubkey.n, pubkey.size, &key[mod_offset]);
|
|
|
|
/* Digest content of "buf" and verify its RSA signature in "sigblock"*/
|
|
nettle_mpz_init_set_str_256_u(signature, sigblock_len, (uint8_t*)sigblock);
|
|
switch (digest_size) {
|
|
case SHA1_DIGEST_SIZE:
|
|
{
|
|
uint8_t digest[SHA1_DIGEST_SIZE];
|
|
res = _digest_nettle(SHA1_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
|
|
(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
|
|
res &= rsa_sha1_verify_digest(&pubkey, digest, signature);
|
|
break;
|
|
}
|
|
case SHA256_DIGEST_SIZE:
|
|
{
|
|
uint8_t digest[SHA256_DIGEST_SIZE];
|
|
res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
|
|
(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
|
|
res &= rsa_sha256_verify_digest(&pubkey, digest, signature);
|
|
break;
|
|
}
|
|
case SHA512_DIGEST_SIZE:
|
|
{
|
|
uint8_t digest[SHA512_DIGEST_SIZE];
|
|
res = _digest_nettle(SHA512_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
|
|
(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
|
|
res &= rsa_sha512_verify_digest(&pubkey, digest, signature);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Clear and return */
|
|
nettle_rsa_public_key_clear(&pubkey);
|
|
mpz_clear(signature);
|
|
if (!res) {
|
|
return "RSA signature verification failed";
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
#ifdef USE_ECDSA
|
|
static char *
|
|
_verify_nettle_ecdsa(sldns_buffer* buf, unsigned int digest_size, unsigned char* sigblock,
|
|
unsigned int sigblock_len, unsigned char* key, unsigned int keylen)
|
|
{
|
|
int res = 0;
|
|
struct ecc_point pubkey;
|
|
struct dsa_signature signature;
|
|
|
|
/* Always matched strength, as per RFC 6605 sec. 1 */
|
|
if (sigblock_len != 2*digest_size || keylen != 2*digest_size) {
|
|
return "wrong ECDSA signature length";
|
|
}
|
|
|
|
/* Parse ECDSA signature as per RFC 6605 sec. 4 */
|
|
nettle_dsa_signature_init(&signature);
|
|
switch (digest_size) {
|
|
case SHA256_DIGEST_SIZE:
|
|
{
|
|
uint8_t digest[SHA256_DIGEST_SIZE];
|
|
mpz_t x, y;
|
|
nettle_ecc_point_init(&pubkey, &nettle_secp_256r1);
|
|
nettle_mpz_init_set_str_256_u(x, SHA256_DIGEST_SIZE, key);
|
|
nettle_mpz_init_set_str_256_u(y, SHA256_DIGEST_SIZE, key+SHA256_DIGEST_SIZE);
|
|
nettle_mpz_set_str_256_u(signature.r, SHA256_DIGEST_SIZE, sigblock);
|
|
nettle_mpz_set_str_256_u(signature.s, SHA256_DIGEST_SIZE, sigblock+SHA256_DIGEST_SIZE);
|
|
res = _digest_nettle(SHA256_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
|
|
(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
|
|
res &= nettle_ecc_point_set(&pubkey, x, y);
|
|
res &= nettle_ecdsa_verify (&pubkey, SHA256_DIGEST_SIZE, digest, &signature);
|
|
mpz_clear(x);
|
|
mpz_clear(y);
|
|
break;
|
|
}
|
|
case SHA384_DIGEST_SIZE:
|
|
{
|
|
uint8_t digest[SHA384_DIGEST_SIZE];
|
|
mpz_t x, y;
|
|
nettle_ecc_point_init(&pubkey, &nettle_secp_384r1);
|
|
nettle_mpz_init_set_str_256_u(x, SHA384_DIGEST_SIZE, key);
|
|
nettle_mpz_init_set_str_256_u(y, SHA384_DIGEST_SIZE, key+SHA384_DIGEST_SIZE);
|
|
nettle_mpz_set_str_256_u(signature.r, SHA384_DIGEST_SIZE, sigblock);
|
|
nettle_mpz_set_str_256_u(signature.s, SHA384_DIGEST_SIZE, sigblock+SHA384_DIGEST_SIZE);
|
|
res = _digest_nettle(SHA384_DIGEST_SIZE, (unsigned char*)sldns_buffer_begin(buf),
|
|
(unsigned int)sldns_buffer_limit(buf), (unsigned char*)digest);
|
|
res &= nettle_ecc_point_set(&pubkey, x, y);
|
|
res &= nettle_ecdsa_verify (&pubkey, SHA384_DIGEST_SIZE, digest, &signature);
|
|
mpz_clear(x);
|
|
mpz_clear(y);
|
|
nettle_ecc_point_clear(&pubkey);
|
|
break;
|
|
}
|
|
default:
|
|
return "unknown ECDSA algorithm";
|
|
}
|
|
|
|
/* Clear and return */
|
|
nettle_dsa_signature_clear(&signature);
|
|
if (!res)
|
|
return "ECDSA signature verification failed";
|
|
else
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Check a canonical sig+rrset and signature against a dnskey
|
|
* @param buf: buffer with data to verify, the first rrsig part and the
|
|
* canonicalized rrset.
|
|
* @param algo: DNSKEY algorithm.
|
|
* @param sigblock: signature rdata field from RRSIG
|
|
* @param sigblock_len: length of sigblock data.
|
|
* @param key: public key data from DNSKEY RR.
|
|
* @param keylen: length of keydata.
|
|
* @param reason: bogus reason in more detail.
|
|
* @return secure if verification succeeded, bogus on crypto failure,
|
|
* unchecked on format errors and alloc failures.
|
|
*/
|
|
enum sec_status
|
|
verify_canonrrset(sldns_buffer* buf, int algo, unsigned char* sigblock,
|
|
unsigned int sigblock_len, unsigned char* key, unsigned int keylen,
|
|
char** reason)
|
|
{
|
|
unsigned int digest_size = 0;
|
|
|
|
if (sigblock_len == 0 || keylen == 0) {
|
|
*reason = "null signature";
|
|
return sec_status_bogus;
|
|
}
|
|
|
|
switch(algo) {
|
|
#if defined(USE_DSA) && defined(USE_SHA1)
|
|
case LDNS_DSA:
|
|
case LDNS_DSA_NSEC3:
|
|
*reason = _verify_nettle_dsa(buf, sigblock, sigblock_len, key, keylen);
|
|
if (*reason != NULL)
|
|
return sec_status_bogus;
|
|
else
|
|
return sec_status_secure;
|
|
#endif /* USE_DSA */
|
|
|
|
#ifdef USE_SHA1
|
|
case LDNS_RSASHA1:
|
|
case LDNS_RSASHA1_NSEC3:
|
|
digest_size = (digest_size ? digest_size : SHA1_DIGEST_SIZE);
|
|
#endif
|
|
#ifdef USE_SHA2
|
|
case LDNS_RSASHA256:
|
|
digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
|
|
case LDNS_RSASHA512:
|
|
digest_size = (digest_size ? digest_size : SHA512_DIGEST_SIZE);
|
|
|
|
#endif
|
|
*reason = _verify_nettle_rsa(buf, digest_size, (char*)sigblock,
|
|
sigblock_len, key, keylen);
|
|
if (*reason != NULL)
|
|
return sec_status_bogus;
|
|
else
|
|
return sec_status_secure;
|
|
|
|
#ifdef USE_ECDSA
|
|
case LDNS_ECDSAP256SHA256:
|
|
digest_size = (digest_size ? digest_size : SHA256_DIGEST_SIZE);
|
|
case LDNS_ECDSAP384SHA384:
|
|
digest_size = (digest_size ? digest_size : SHA384_DIGEST_SIZE);
|
|
*reason = _verify_nettle_ecdsa(buf, digest_size, sigblock,
|
|
sigblock_len, key, keylen);
|
|
if (*reason != NULL)
|
|
return sec_status_bogus;
|
|
else
|
|
return sec_status_secure;
|
|
#endif
|
|
case LDNS_RSAMD5:
|
|
case LDNS_ECC_GOST:
|
|
default:
|
|
*reason = "unable to verify signature, unknown algorithm";
|
|
return sec_status_bogus;
|
|
}
|
|
}
|
|
|
|
#endif /* HAVE_SSL or HAVE_NSS or HAVE_NETTLE */
|