monero/tests/unit_tests/fcmp_tree.cpp

305 lines
11 KiB
C++

// Copyright (c) 2014, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "gtest/gtest.h"
#include "fcmp/fcmp.h"
#include "misc_log_ex.h"
#include <cmath>
static const fcmp::Leaves generate_leaves(const std::size_t num_leaves)
{
std::vector<fcmp::LeafTuple> tuples;
tuples.reserve(num_leaves);
for (std::size_t i = 0; i < num_leaves; ++i)
{
// Generate random output tuple
crypto::secret_key o,c;
crypto::public_key O,C;
crypto::generate_keys(O, o, o, false);
crypto::generate_keys(C, c, c, false);
tuples.emplace_back(fcmp::output_to_leaf_tuple(O, C));
}
return fcmp::Leaves{
.start_idx = 0,
.tuples = std::move(tuples)
};
}
static void log_tree_extension(const fcmp::TreeExtension<fcmp::Helios, fcmp::Selene> &tree_extension)
{
const auto &c1_extensions = tree_extension.c1_layer_extensions;
const auto &c2_extensions = tree_extension.c2_layer_extensions;
MDEBUG("Tree extension has " << tree_extension.leaves.tuples.size() << " leaves, "
<< c1_extensions.size() << " helios layers, " << c2_extensions.size() << " selene layers");
MDEBUG("Leaf start idx: " << tree_extension.leaves.start_idx);
for (std::size_t i = 0; i < tree_extension.leaves.tuples.size(); ++i)
{
const auto &leaf = tree_extension.leaves.tuples[i];
const auto O_x = fcmp::SELENE.to_string(leaf.O_x);
const auto I_x = fcmp::SELENE.to_string(leaf.I_x);
const auto C_x = fcmp::SELENE.to_string(leaf.C_x);
MDEBUG("Leaf idx " << ((i*fcmp::LEAF_TUPLE_SIZE) + tree_extension.leaves.start_idx) << " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
}
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_extensions.size() + c2_extensions.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_extensions.size(), "unexpected c2 layer");
const fcmp::LayerExtension<fcmp::Selene> &c2_layer = c2_extensions[c2_idx];
MDEBUG("Selene tree extension start idx: " << c2_layer.start_idx);
for (std::size_t j = 0; j < c2_layer.hashes.size(); ++j)
MDEBUG("Hash idx: " << (j + c2_layer.start_idx) << " , hash: " << fcmp::SELENE.to_string(c2_layer.hashes[j]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_extensions.size(), "unexpected c1 layer");
const fcmp::LayerExtension<fcmp::Helios> &c1_layer = c1_extensions[c1_idx];
MDEBUG("Helios tree extension start idx: " << c1_layer.start_idx);
for (std::size_t j = 0; j < c1_layer.hashes.size(); ++j)
MDEBUG("Hash idx: " << (j + c1_layer.start_idx) << " , hash: " << fcmp::HELIOS.to_string(c1_layer.hashes[j]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
static void log_tree(const fcmp::Tree<fcmp::Helios, fcmp::Selene> &tree)
{
MDEBUG("Tree has " << tree.leaves.size() << " leaves, "
<< tree.c1_layers.size() << " helios layers, " << tree.c2_layers.size() << " selene layers");
for (std::size_t i = 0; i < tree.leaves.size(); ++i)
{
const auto &leaf = tree.leaves[i];
const auto O_x = fcmp::SELENE.to_string(leaf.O_x);
const auto I_x = fcmp::SELENE.to_string(leaf.I_x);
const auto C_x = fcmp::SELENE.to_string(leaf.C_x);
MDEBUG("Leaf idx " << i << " : { O_x: " << O_x << " , I_x: " << I_x << " , C_x: " << C_x << " }");
}
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (tree.c1_layers.size() + tree.c2_layers.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < tree.c2_layers.size(), "unexpected c2 layer");
const fcmp::Layer<fcmp::Selene> &c2_layer = tree.c2_layers[c2_idx];
MDEBUG("Selene layer size: " << c2_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c2_layer.size(); ++j)
MDEBUG("Hash idx: " << j << " , hash: " << fcmp::SELENE.to_string(c2_layer[j]));
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < tree.c1_layers.size(), "unexpected c1 layer");
const fcmp::Layer<fcmp::Helios> &c1_layer = tree.c1_layers[c1_idx];
MDEBUG("Helios layer size: " << c1_layer.size() << " , tree layer: " << i);
for (std::size_t j = 0; j < c1_layer.size(); ++j)
MDEBUG("Hash idx: " << j << " , hash: " << fcmp::HELIOS.to_string(c1_layer[j]));
++c1_idx;
}
use_c2 = !use_c2;
}
}
static void log_last_chunks(const fcmp::LastChunks<fcmp::Helios, fcmp::Selene> &last_chunks)
{
const auto &c1_last_chunks = last_chunks.c1_last_chunks;
const auto &c2_last_chunks = last_chunks.c2_last_chunks;
MDEBUG("Total of " << c1_last_chunks.size() << " Helios last chunks and "
<< c2_last_chunks.size() << " Selene last chunks");
bool use_c2 = true;
std::size_t c1_idx = 0;
std::size_t c2_idx = 0;
for (std::size_t i = 0; i < (c1_last_chunks.size() + c2_last_chunks.size()); ++i)
{
if (use_c2)
{
CHECK_AND_ASSERT_THROW_MES(c2_idx < c2_last_chunks.size(), "unexpected c2 layer");
const fcmp::LastChunkData<fcmp::Selene> &last_chunk = c2_last_chunks[c2_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << fcmp::SELENE.to_string(last_chunk.last_child)
<< " , last_parent: " << fcmp::SELENE.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c2_idx;
}
else
{
CHECK_AND_ASSERT_THROW_MES(c1_idx < c1_last_chunks.size(), "unexpected c1 layer");
const fcmp::LastChunkData<fcmp::Helios> &last_chunk = c1_last_chunks[c1_idx];
MDEBUG("child_offset: " << last_chunk.child_offset
<< " , last_child: " << fcmp::HELIOS.to_string(last_chunk.last_child)
<< " , last_parent: " << fcmp::HELIOS.to_string(last_chunk.last_parent)
<< " , child_layer_size: " << last_chunk.child_layer_size
<< " , parent_layer_size: " << last_chunk.parent_layer_size);
++c1_idx;
}
use_c2 = !use_c2;
}
}
TEST(fcmp_tree, grow_tree)
{
// TODO: 1 .. std::pow(fcmp::SELENE.WIDTH, 5)+2
const std::vector<std::size_t> N_LEAVES{
1,
2,
3,
fcmp::SELENE.WIDTH - 1,
fcmp::SELENE.WIDTH,
fcmp::SELENE.WIDTH + 1,
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 2) - 1,
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 2),
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 2) + 1,
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 3),
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 4),
(std::size_t)std::pow(fcmp::SELENE.WIDTH, 5)
};
for (const auto &init_leaves : N_LEAVES)
{
for (const auto &ext_leaves : N_LEAVES)
{
MDEBUG("Adding " << init_leaves << " leaves to tree, then extending by " << ext_leaves << " leaves");
fcmp::Tree<fcmp::Helios, fcmp::Selene> global_tree;
// TODO: use a class that's initialized with the curve cycle and don't need to call templated functions with curve instances every time
// Initially extend global tree by `init_leaves`
{
MDEBUG("Adding " << init_leaves << " leaves to tree");
const auto tree_extension = fcmp::get_tree_extension<fcmp::Helios, fcmp::Selene>(
fcmp::LastChunks<fcmp::Helios, fcmp::Selene>{},
generate_leaves(init_leaves),
fcmp::HELIOS,
fcmp::SELENE);
log_tree_extension(tree_extension);
fcmp::extend_tree<fcmp::Helios, fcmp::Selene>(
tree_extension,
fcmp::HELIOS,
fcmp::SELENE,
global_tree);
log_tree(global_tree);
const bool validated = fcmp::validate_tree<fcmp::Helios, fcmp::Selene>(
global_tree,
fcmp::HELIOS,
fcmp::SELENE);
ASSERT_TRUE(validated);
MDEBUG("Successfully added initial " << init_leaves << " leaves to tree");
}
// Then extend the global tree again by `ext_leaves`
{
MDEBUG("Extending tree by " << ext_leaves << " leaves");
const auto last_chunks = fcmp::get_last_chunks<fcmp::Helios, fcmp::Selene>(
fcmp::HELIOS,
fcmp::SELENE,
global_tree);
log_last_chunks(last_chunks);
const auto tree_extension = fcmp::get_tree_extension<fcmp::Helios, fcmp::Selene>(
last_chunks,
generate_leaves(ext_leaves),
fcmp::HELIOS,
fcmp::SELENE);
log_tree_extension(tree_extension);
fcmp::extend_tree<fcmp::Helios, fcmp::Selene>(
tree_extension,
fcmp::HELIOS,
fcmp::SELENE,
global_tree);
log_tree(global_tree);
const bool validated = fcmp::validate_tree<fcmp::Helios, fcmp::Selene>(
global_tree,
fcmp::HELIOS,
fcmp::SELENE);
ASSERT_TRUE(validated);
MDEBUG("Successfully extended by " << ext_leaves << " leaves");
}
}
}
}