//go:build !android && !e2e_testing // +build !android,!e2e_testing package udp import ( "encoding/binary" "fmt" "net" "net/netip" "syscall" "unsafe" "github.com/rcrowley/go-metrics" "github.com/sirupsen/logrus" "github.com/slackhq/nebula/config" "github.com/slackhq/nebula/firewall" "github.com/slackhq/nebula/header" "golang.org/x/sys/unix" ) //TODO: make it support reload as best you can! type StdConn struct { sysFd int isV4 bool l *logrus.Logger batch int } func maybeIPV4(ip net.IP) (net.IP, bool) { ip4 := ip.To4() if ip4 != nil { return ip4, true } return ip, false } func NewListener(l *logrus.Logger, ip netip.Addr, port int, multi bool, batch int) (Conn, error) { af := unix.AF_INET6 if ip.Is4() { af = unix.AF_INET } syscall.ForkLock.RLock() fd, err := unix.Socket(af, unix.SOCK_DGRAM, unix.IPPROTO_UDP) if err == nil { unix.CloseOnExec(fd) } syscall.ForkLock.RUnlock() if err != nil { unix.Close(fd) return nil, fmt.Errorf("unable to open socket: %s", err) } if multi { if err = unix.SetsockoptInt(fd, unix.SOL_SOCKET, unix.SO_REUSEPORT, 1); err != nil { return nil, fmt.Errorf("unable to set SO_REUSEPORT: %s", err) } } //TODO: support multiple listening IPs (for limiting ipv6) var sa unix.Sockaddr if ip.Is4() { sa4 := &unix.SockaddrInet4{Port: port} sa4.Addr = ip.As4() sa = sa4 } else { sa6 := &unix.SockaddrInet6{Port: port} sa6.Addr = ip.As16() sa = sa6 } if err = unix.Bind(fd, sa); err != nil { return nil, fmt.Errorf("unable to bind to socket: %s", err) } //TODO: this may be useful for forcing threads into specific cores //unix.SetsockoptInt(fd, unix.SOL_SOCKET, unix.SO_INCOMING_CPU, x) //v, err := unix.GetsockoptInt(fd, unix.SOL_SOCKET, unix.SO_INCOMING_CPU) //l.Println(v, err) return &StdConn{sysFd: fd, isV4: ip.Is4(), l: l, batch: batch}, err } func (u *StdConn) Rebind() error { return nil } func (u *StdConn) SetRecvBuffer(n int) error { return unix.SetsockoptInt(u.sysFd, unix.SOL_SOCKET, unix.SO_RCVBUFFORCE, n) } func (u *StdConn) SetSendBuffer(n int) error { return unix.SetsockoptInt(u.sysFd, unix.SOL_SOCKET, unix.SO_SNDBUFFORCE, n) } func (u *StdConn) GetRecvBuffer() (int, error) { return unix.GetsockoptInt(int(u.sysFd), unix.SOL_SOCKET, unix.SO_RCVBUF) } func (u *StdConn) GetSendBuffer() (int, error) { return unix.GetsockoptInt(int(u.sysFd), unix.SOL_SOCKET, unix.SO_SNDBUF) } func (u *StdConn) LocalAddr() (netip.AddrPort, error) { sa, err := unix.Getsockname(u.sysFd) if err != nil { return netip.AddrPort{}, err } switch sa := sa.(type) { case *unix.SockaddrInet4: return netip.AddrPortFrom(netip.AddrFrom4(sa.Addr), uint16(sa.Port)), nil case *unix.SockaddrInet6: return netip.AddrPortFrom(netip.AddrFrom16(sa.Addr), uint16(sa.Port)), nil default: return netip.AddrPort{}, fmt.Errorf("unsupported sock type: %T", sa) } } func (u *StdConn) ListenOut(r EncReader, lhf LightHouseHandlerFunc, cache *firewall.ConntrackCacheTicker, q int) { plaintext := make([]byte, MTU) h := &header.H{} fwPacket := &firewall.Packet{} var ip netip.Addr nb := make([]byte, 12, 12) //TODO: should we track this? //metric := metrics.GetOrRegisterHistogram("test.batch_read", nil, metrics.NewExpDecaySample(1028, 0.015)) msgs, buffers, names := u.PrepareRawMessages(u.batch) read := u.ReadMulti if u.batch == 1 { read = u.ReadSingle } for { n, err := read(msgs) if err != nil { u.l.WithError(err).Debug("udp socket is closed, exiting read loop") return } //metric.Update(int64(n)) for i := 0; i < n; i++ { if u.isV4 { ip, _ = netip.AddrFromSlice(names[i][4:8]) //TODO: IPV6-WORK what is not ok? } else { ip, _ = netip.AddrFromSlice(names[i][8:24]) //TODO: IPV6-WORK what is not ok? } r( netip.AddrPortFrom(ip.Unmap(), binary.BigEndian.Uint16(names[i][2:4])), plaintext[:0], buffers[i][:msgs[i].Len], h, fwPacket, lhf, nb, q, cache.Get(u.l), ) } } } func (u *StdConn) ReadSingle(msgs []rawMessage) (int, error) { for { n, _, err := unix.Syscall6( unix.SYS_RECVMSG, uintptr(u.sysFd), uintptr(unsafe.Pointer(&(msgs[0].Hdr))), 0, 0, 0, 0, ) if err != 0 { return 0, &net.OpError{Op: "recvmsg", Err: err} } msgs[0].Len = uint32(n) return 1, nil } } func (u *StdConn) ReadMulti(msgs []rawMessage) (int, error) { for { n, _, err := unix.Syscall6( unix.SYS_RECVMMSG, uintptr(u.sysFd), uintptr(unsafe.Pointer(&msgs[0])), uintptr(len(msgs)), unix.MSG_WAITFORONE, 0, 0, ) if err != 0 { return 0, &net.OpError{Op: "recvmmsg", Err: err} } return int(n), nil } } func (u *StdConn) WriteTo(b []byte, ip netip.AddrPort) error { if u.isV4 { return u.writeTo4(b, ip) } return u.writeTo6(b, ip) } func (u *StdConn) writeTo6(b []byte, ip netip.AddrPort) error { var rsa unix.RawSockaddrInet6 rsa.Family = unix.AF_INET6 rsa.Addr = ip.Addr().As16() binary.BigEndian.PutUint16((*[2]byte)(unsafe.Pointer(&rsa.Port))[:], ip.Port()) for { _, _, err := unix.Syscall6( unix.SYS_SENDTO, uintptr(u.sysFd), uintptr(unsafe.Pointer(&b[0])), uintptr(len(b)), uintptr(0), uintptr(unsafe.Pointer(&rsa)), uintptr(unix.SizeofSockaddrInet6), ) if err != 0 { return &net.OpError{Op: "sendto", Err: err} } //TODO: handle incomplete writes return nil } } func (u *StdConn) writeTo4(b []byte, ip netip.AddrPort) error { if !ip.Addr().Is4() { return fmt.Errorf("Listener is IPv4, but writing to IPv6 remote") } var rsa unix.RawSockaddrInet4 rsa.Family = unix.AF_INET rsa.Addr = ip.Addr().As4() binary.BigEndian.PutUint16((*[2]byte)(unsafe.Pointer(&rsa.Port))[:], ip.Port()) for { _, _, err := unix.Syscall6( unix.SYS_SENDTO, uintptr(u.sysFd), uintptr(unsafe.Pointer(&b[0])), uintptr(len(b)), uintptr(0), uintptr(unsafe.Pointer(&rsa)), uintptr(unix.SizeofSockaddrInet4), ) if err != 0 { return &net.OpError{Op: "sendto", Err: err} } //TODO: handle incomplete writes return nil } } func (u *StdConn) ReloadConfig(c *config.C) { b := c.GetInt("listen.read_buffer", 0) if b > 0 { err := u.SetRecvBuffer(b) if err == nil { s, err := u.GetRecvBuffer() if err == nil { u.l.WithField("size", s).Info("listen.read_buffer was set") } else { u.l.WithError(err).Warn("Failed to get listen.read_buffer") } } else { u.l.WithError(err).Error("Failed to set listen.read_buffer") } } b = c.GetInt("listen.write_buffer", 0) if b > 0 { err := u.SetSendBuffer(b) if err == nil { s, err := u.GetSendBuffer() if err == nil { u.l.WithField("size", s).Info("listen.write_buffer was set") } else { u.l.WithError(err).Warn("Failed to get listen.write_buffer") } } else { u.l.WithError(err).Error("Failed to set listen.write_buffer") } } } func (u *StdConn) getMemInfo(meminfo *[unix.SK_MEMINFO_VARS]uint32) error { var vallen uint32 = 4 * unix.SK_MEMINFO_VARS _, _, err := unix.Syscall6(unix.SYS_GETSOCKOPT, uintptr(u.sysFd), uintptr(unix.SOL_SOCKET), uintptr(unix.SO_MEMINFO), uintptr(unsafe.Pointer(meminfo)), uintptr(unsafe.Pointer(&vallen)), 0) if err != 0 { return err } return nil } func (u *StdConn) Close() error { //TODO: this will not interrupt the read loop return syscall.Close(u.sysFd) } func NewUDPStatsEmitter(udpConns []Conn) func() { // Check if our kernel supports SO_MEMINFO before registering the gauges var udpGauges [][unix.SK_MEMINFO_VARS]metrics.Gauge var meminfo [unix.SK_MEMINFO_VARS]uint32 if err := udpConns[0].(*StdConn).getMemInfo(&meminfo); err == nil { udpGauges = make([][unix.SK_MEMINFO_VARS]metrics.Gauge, len(udpConns)) for i := range udpConns { udpGauges[i] = [unix.SK_MEMINFO_VARS]metrics.Gauge{ metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.rmem_alloc", i), nil), metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.rcvbuf", i), nil), metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.wmem_alloc", i), nil), metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.sndbuf", i), nil), metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.fwd_alloc", i), nil), metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.wmem_queued", i), nil), metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.optmem", i), nil), metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.backlog", i), nil), metrics.GetOrRegisterGauge(fmt.Sprintf("udp.%d.drops", i), nil), } } } return func() { for i, gauges := range udpGauges { if err := udpConns[i].(*StdConn).getMemInfo(&meminfo); err == nil { for j := 0; j < unix.SK_MEMINFO_VARS; j++ { gauges[j].Update(int64(meminfo[j])) } } } } }