package nebula import ( "encoding/binary" "errors" "fmt" "time" "github.com/flynn/noise" "github.com/sirupsen/logrus" "github.com/slackhq/nebula/cert" "github.com/slackhq/nebula/firewall" "github.com/slackhq/nebula/header" "github.com/slackhq/nebula/iputil" "github.com/slackhq/nebula/udp" "golang.org/x/net/ipv4" "google.golang.org/protobuf/proto" ) const ( minFwPacketLen = 4 ) func (f *Interface) readOutsidePackets(addr *udp.Addr, via interface{}, out []byte, packet []byte, h *header.H, fwPacket *firewall.Packet, lhf udp.LightHouseHandlerFunc, nb []byte, q int, localCache firewall.ConntrackCache) { err := h.Parse(packet) if err != nil { // TODO: best if we return this and let caller log // TODO: Might be better to send the literal []byte("holepunch") packet and ignore that? // Hole punch packets are 0 or 1 byte big, so lets ignore printing those errors if len(packet) > 1 { f.l.WithField("packet", packet).Infof("Error while parsing inbound packet from %s: %s", addr, err) } return } //l.Error("in packet ", header, packet[HeaderLen:]) if addr != nil { if ip4 := addr.IP.To4(); ip4 != nil { if ipMaskContains(f.lightHouse.myVpnIp, f.lightHouse.myVpnZeros, iputil.VpnIp(binary.BigEndian.Uint32(ip4))) { if f.l.Level >= logrus.DebugLevel { f.l.WithField("udpAddr", addr).Debug("Refusing to process double encrypted packet") } return } } } var hostinfo *HostInfo // verify if we've seen this index before, otherwise respond to the handshake initiation if h.Type == header.Message && h.Subtype == header.MessageRelay { hostinfo, _ = f.hostMap.QueryRelayIndex(h.RemoteIndex) } else { hostinfo, _ = f.hostMap.QueryIndex(h.RemoteIndex) } var ci *ConnectionState if hostinfo != nil { ci = hostinfo.ConnectionState } switch h.Type { case header.Message: // TODO handleEncrypted sends directly to addr on error. Handle this in the tunneling case. if !f.handleEncrypted(ci, addr, h) { return } switch h.Subtype { case header.MessageNone: f.decryptToTun(hostinfo, h.MessageCounter, out, packet, fwPacket, nb, q, localCache) case header.MessageRelay: // The entire body is sent as AD, not encrypted. // The packet consists of a 16-byte parsed Nebula header, Associated Data-protected payload, and a trailing 16-byte AEAD signature value. // The packet is guaranteed to be at least 16 bytes at this point, b/c it got past the h.Parse() call above. If it's // otherwise malformed (meaning, there is no trailing 16 byte AEAD value), then this will result in at worst a 0-length slice // which will gracefully fail in the DecryptDanger call. signedPayload := packet[:len(packet)-hostinfo.ConnectionState.dKey.Overhead()] signatureValue := packet[len(packet)-hostinfo.ConnectionState.dKey.Overhead():] out, err = hostinfo.ConnectionState.dKey.DecryptDanger(out, signedPayload, signatureValue, h.MessageCounter, nb) if err != nil { return } // Successfully validated the thing. Get rid of the Relay header. signedPayload = signedPayload[header.Len:] // Pull the Roaming parts up here, and return in all call paths. f.handleHostRoaming(hostinfo, addr) f.connectionManager.In(hostinfo.localIndexId) relay, ok := hostinfo.relayState.QueryRelayForByIdx(h.RemoteIndex) if !ok { // The only way this happens is if hostmap has an index to the correct HostInfo, but the HostInfo is missing // its internal mapping. This should never happen. hostinfo.logger(f.l).WithFields(logrus.Fields{"vpnIp": hostinfo.vpnIp, "remoteIndex": h.RemoteIndex}).Error("HostInfo missing remote relay index") return } switch relay.Type { case TerminalType: // If I am the target of this relay, process the unwrapped packet // From this recursive point, all these variables are 'burned'. We shouldn't rely on them again. f.readOutsidePackets(nil, &ViaSender{relayHI: hostinfo, remoteIdx: relay.RemoteIndex, relay: relay}, out[:0], signedPayload, h, fwPacket, lhf, nb, q, localCache) return case ForwardingType: // Find the target HostInfo relay object targetHI, err := f.hostMap.QueryVpnIp(relay.PeerIp) if err != nil { hostinfo.logger(f.l).WithField("relayTo", relay.PeerIp).WithError(err).Info("Failed to find target host info by ip") return } // find the target Relay info object targetRelay, ok := targetHI.relayState.QueryRelayForByIp(hostinfo.vpnIp) if !ok { hostinfo.logger(f.l).WithFields(logrus.Fields{"relayTo": relay.PeerIp, "relayFrom": hostinfo.vpnIp}).Info("Failed to find relay in hostinfo") return } // If that relay is Established, forward the payload through it if targetRelay.State == Established { switch targetRelay.Type { case ForwardingType: // Forward this packet through the relay tunnel // Find the target HostInfo f.SendVia(targetHI, targetRelay, signedPayload, nb, out, false) return case TerminalType: hostinfo.logger(f.l).Error("Unexpected Relay Type of Terminal") } } else { hostinfo.logger(f.l).WithFields(logrus.Fields{"relayTo": relay.PeerIp, "relayFrom": hostinfo.vpnIp, "targetRelayState": targetRelay.State}).Info("Unexpected target relay state") return } } } case header.LightHouse: f.messageMetrics.Rx(h.Type, h.Subtype, 1) if !f.handleEncrypted(ci, addr, h) { return } d, err := f.decrypt(hostinfo, h.MessageCounter, out, packet, h, nb) if err != nil { hostinfo.logger(f.l).WithError(err).WithField("udpAddr", addr). WithField("packet", packet). Error("Failed to decrypt lighthouse packet") //TODO: maybe after build 64 is out? 06/14/2018 - NB //f.sendRecvError(net.Addr(addr), header.RemoteIndex) return } lhf(addr, hostinfo.vpnIp, d, f) // Fallthrough to the bottom to record incoming traffic case header.Test: f.messageMetrics.Rx(h.Type, h.Subtype, 1) if !f.handleEncrypted(ci, addr, h) { return } d, err := f.decrypt(hostinfo, h.MessageCounter, out, packet, h, nb) if err != nil { hostinfo.logger(f.l).WithError(err).WithField("udpAddr", addr). WithField("packet", packet). Error("Failed to decrypt test packet") //TODO: maybe after build 64 is out? 06/14/2018 - NB //f.sendRecvError(net.Addr(addr), header.RemoteIndex) return } if h.Subtype == header.TestRequest { // This testRequest might be from TryPromoteBest, so we should roam // to the new IP address before responding f.handleHostRoaming(hostinfo, addr) f.send(header.Test, header.TestReply, ci, hostinfo, d, nb, out) } // Fallthrough to the bottom to record incoming traffic // Non encrypted messages below here, they should not fall through to avoid tracking incoming traffic since they // are unauthenticated case header.Handshake: f.messageMetrics.Rx(h.Type, h.Subtype, 1) HandleIncomingHandshake(f, addr, via, packet, h, hostinfo) return case header.RecvError: f.messageMetrics.Rx(h.Type, h.Subtype, 1) f.handleRecvError(addr, h) return case header.CloseTunnel: f.messageMetrics.Rx(h.Type, h.Subtype, 1) if !f.handleEncrypted(ci, addr, h) { return } hostinfo.logger(f.l).WithField("udpAddr", addr). Info("Close tunnel received, tearing down.") f.closeTunnel(hostinfo) return case header.Control: if !f.handleEncrypted(ci, addr, h) { return } d, err := f.decrypt(hostinfo, h.MessageCounter, out, packet, h, nb) if err != nil { hostinfo.logger(f.l).WithError(err).WithField("udpAddr", addr). WithField("packet", packet). Error("Failed to decrypt Control packet") return } m := &NebulaControl{} err = m.Unmarshal(d) if err != nil { hostinfo.logger(f.l).WithError(err).Error("Failed to unmarshal control message") break } f.relayManager.HandleControlMsg(hostinfo, m, f) default: f.messageMetrics.Rx(h.Type, h.Subtype, 1) hostinfo.logger(f.l).Debugf("Unexpected packet received from %s", addr) return } f.handleHostRoaming(hostinfo, addr) f.connectionManager.In(hostinfo.localIndexId) } // closeTunnel closes a tunnel locally, it does not send a closeTunnel packet to the remote func (f *Interface) closeTunnel(hostInfo *HostInfo) { final := f.hostMap.DeleteHostInfo(hostInfo) if final { // We no longer have any tunnels with this vpn ip, clear learned lighthouse state to lower memory usage f.lightHouse.DeleteVpnIp(hostInfo.vpnIp) } } // sendCloseTunnel is a helper function to send a proper close tunnel packet to a remote func (f *Interface) sendCloseTunnel(h *HostInfo) { f.send(header.CloseTunnel, 0, h.ConnectionState, h, []byte{}, make([]byte, 12, 12), make([]byte, mtu)) } func (f *Interface) handleHostRoaming(hostinfo *HostInfo, addr *udp.Addr) { if addr != nil && !hostinfo.remote.Equals(addr) { if !f.lightHouse.GetRemoteAllowList().Allow(hostinfo.vpnIp, addr.IP) { hostinfo.logger(f.l).WithField("newAddr", addr).Debug("lighthouse.remote_allow_list denied roaming") return } if !hostinfo.lastRoam.IsZero() && addr.Equals(hostinfo.lastRoamRemote) && time.Since(hostinfo.lastRoam) < RoamingSuppressSeconds*time.Second { if f.l.Level >= logrus.DebugLevel { hostinfo.logger(f.l).WithField("udpAddr", hostinfo.remote).WithField("newAddr", addr). Debugf("Suppressing roam back to previous remote for %d seconds", RoamingSuppressSeconds) } return } hostinfo.logger(f.l).WithField("udpAddr", hostinfo.remote).WithField("newAddr", addr). Info("Host roamed to new udp ip/port.") hostinfo.lastRoam = time.Now() hostinfo.lastRoamRemote = hostinfo.remote hostinfo.SetRemote(addr) } } func (f *Interface) handleEncrypted(ci *ConnectionState, addr *udp.Addr, h *header.H) bool { // If connectionstate exists and the replay protector allows, process packet // Else, send recv errors for 300 seconds after a restart to allow fast reconnection. if ci == nil || !ci.window.Check(f.l, h.MessageCounter) { if addr != nil { f.maybeSendRecvError(addr, h.RemoteIndex) return false } else { return false } } return true } // newPacket validates and parses the interesting bits for the firewall out of the ip and sub protocol headers func newPacket(data []byte, incoming bool, fp *firewall.Packet) error { // Do we at least have an ipv4 header worth of data? if len(data) < ipv4.HeaderLen { return fmt.Errorf("packet is less than %v bytes", ipv4.HeaderLen) } // Is it an ipv4 packet? if int((data[0]>>4)&0x0f) != 4 { return fmt.Errorf("packet is not ipv4, type: %v", int((data[0]>>4)&0x0f)) } // Adjust our start position based on the advertised ip header length ihl := int(data[0]&0x0f) << 2 // Well formed ip header length? if ihl < ipv4.HeaderLen { return fmt.Errorf("packet had an invalid header length: %v", ihl) } // Check if this is the second or further fragment of a fragmented packet. flagsfrags := binary.BigEndian.Uint16(data[6:8]) fp.Fragment = (flagsfrags & 0x1FFF) != 0 // Firewall handles protocol checks fp.Protocol = data[9] // Accounting for a variable header length, do we have enough data for our src/dst tuples? minLen := ihl if !fp.Fragment && fp.Protocol != firewall.ProtoICMP { minLen += minFwPacketLen } if len(data) < minLen { return fmt.Errorf("packet is less than %v bytes, ip header len: %v", minLen, ihl) } // Firewall packets are locally oriented if incoming { fp.RemoteIP = iputil.Ip2VpnIp(data[12:16]) fp.LocalIP = iputil.Ip2VpnIp(data[16:20]) if fp.Fragment || fp.Protocol == firewall.ProtoICMP { fp.RemotePort = 0 fp.LocalPort = 0 } else { fp.RemotePort = binary.BigEndian.Uint16(data[ihl : ihl+2]) fp.LocalPort = binary.BigEndian.Uint16(data[ihl+2 : ihl+4]) } } else { fp.LocalIP = iputil.Ip2VpnIp(data[12:16]) fp.RemoteIP = iputil.Ip2VpnIp(data[16:20]) if fp.Fragment || fp.Protocol == firewall.ProtoICMP { fp.RemotePort = 0 fp.LocalPort = 0 } else { fp.LocalPort = binary.BigEndian.Uint16(data[ihl : ihl+2]) fp.RemotePort = binary.BigEndian.Uint16(data[ihl+2 : ihl+4]) } } return nil } func (f *Interface) decrypt(hostinfo *HostInfo, mc uint64, out []byte, packet []byte, h *header.H, nb []byte) ([]byte, error) { var err error out, err = hostinfo.ConnectionState.dKey.DecryptDanger(out, packet[:header.Len], packet[header.Len:], mc, nb) if err != nil { return nil, err } if !hostinfo.ConnectionState.window.Update(f.l, mc) { hostinfo.logger(f.l).WithField("header", h). Debugln("dropping out of window packet") return nil, errors.New("out of window packet") } return out, nil } func (f *Interface) decryptToTun(hostinfo *HostInfo, messageCounter uint64, out []byte, packet []byte, fwPacket *firewall.Packet, nb []byte, q int, localCache firewall.ConntrackCache) { var err error out, err = hostinfo.ConnectionState.dKey.DecryptDanger(out, packet[:header.Len], packet[header.Len:], messageCounter, nb) if err != nil { hostinfo.logger(f.l).WithError(err).Error("Failed to decrypt packet") //TODO: maybe after build 64 is out? 06/14/2018 - NB //f.sendRecvError(hostinfo.remote, header.RemoteIndex) return } err = newPacket(out, true, fwPacket) if err != nil { hostinfo.logger(f.l).WithError(err).WithField("packet", out). Warnf("Error while validating inbound packet") return } if !hostinfo.ConnectionState.window.Update(f.l, messageCounter) { hostinfo.logger(f.l).WithField("fwPacket", fwPacket). Debugln("dropping out of window packet") return } dropReason := f.firewall.Drop(out, *fwPacket, true, hostinfo, f.caPool, localCache) if dropReason != nil { f.rejectOutside(out, hostinfo.ConnectionState, hostinfo, nb, out, q) if f.l.Level >= logrus.DebugLevel { hostinfo.logger(f.l).WithField("fwPacket", fwPacket). WithField("reason", dropReason). Debugln("dropping inbound packet") } return } f.connectionManager.In(hostinfo.localIndexId) _, err = f.readers[q].Write(out) if err != nil { f.l.WithError(err).Error("Failed to write to tun") } } func (f *Interface) maybeSendRecvError(endpoint *udp.Addr, index uint32) { if f.sendRecvErrorConfig.ShouldSendRecvError(endpoint.IP) { f.sendRecvError(endpoint, index) } } func (f *Interface) sendRecvError(endpoint *udp.Addr, index uint32) { f.messageMetrics.Tx(header.RecvError, 0, 1) //TODO: this should be a signed message so we can trust that we should drop the index b := header.Encode(make([]byte, header.Len), header.Version, header.RecvError, 0, index, 0) f.outside.WriteTo(b, endpoint) if f.l.Level >= logrus.DebugLevel { f.l.WithField("index", index). WithField("udpAddr", endpoint). Debug("Recv error sent") } } func (f *Interface) handleRecvError(addr *udp.Addr, h *header.H) { if f.l.Level >= logrus.DebugLevel { f.l.WithField("index", h.RemoteIndex). WithField("udpAddr", addr). Debug("Recv error received") } // First, clean up in the pending hostmap f.handshakeManager.pendingHostMap.DeleteReverseIndex(h.RemoteIndex) hostinfo, err := f.hostMap.QueryReverseIndex(h.RemoteIndex) if err != nil { f.l.Debugln(err, ": ", h.RemoteIndex) return } hostinfo.Lock() defer hostinfo.Unlock() if !hostinfo.RecvErrorExceeded() { return } if hostinfo.remote != nil && !hostinfo.remote.Equals(addr) { f.l.Infoln("Someone spoofing recv_errors? ", addr, hostinfo.remote) return } f.closeTunnel(hostinfo) // We also delete it from pending hostmap to allow for // fast reconnect. f.handshakeManager.DeleteHostInfo(hostinfo) } /* func (f *Interface) sendMeta(ci *ConnectionState, endpoint *net.UDPAddr, meta *NebulaMeta) { if ci.eKey != nil { //TODO: log error? return } msg, err := proto.Marshal(meta) if err != nil { l.Debugln("failed to encode header") } c := ci.messageCounter b := HeaderEncode(nil, Version, uint8(metadata), 0, hostinfo.remoteIndexId, c) ci.messageCounter++ msg := ci.eKey.EncryptDanger(b, nil, msg, c) //msg := ci.eKey.EncryptDanger(b, nil, []byte(fmt.Sprintf("%d", counter)), c) f.outside.WriteTo(msg, endpoint) } */ func RecombineCertAndValidate(h *noise.HandshakeState, rawCertBytes []byte, caPool *cert.NebulaCAPool) (*cert.NebulaCertificate, error) { pk := h.PeerStatic() if pk == nil { return nil, errors.New("no peer static key was present") } if rawCertBytes == nil { return nil, errors.New("provided payload was empty") } r := &cert.RawNebulaCertificate{} err := proto.Unmarshal(rawCertBytes, r) if err != nil { return nil, fmt.Errorf("error unmarshaling cert: %s", err) } // If the Details are nil, just exit to avoid crashing if r.Details == nil { return nil, fmt.Errorf("certificate did not contain any details") } r.Details.PublicKey = pk recombined, err := proto.Marshal(r) if err != nil { return nil, fmt.Errorf("error while recombining certificate: %s", err) } c, _ := cert.UnmarshalNebulaCertificate(recombined) isValid, err := c.Verify(time.Now(), caPool) if err != nil { return c, fmt.Errorf("certificate validation failed: %s", err) } else if !isValid { // This case should never happen but here's to defensive programming! return c, errors.New("certificate validation failed but did not return an error") } return c, nil }