nebula/cert/cert.go

165 lines
5.3 KiB
Go

package cert
import (
"fmt"
"net/netip"
"time"
)
type Version uint8
const (
VersionPre1 Version = 0
Version1 Version = 1
Version2 Version = 2
)
type Certificate interface {
// Version defines the underlying certificate structure and wire protocol version
// Version1 certificates are ipv4 only and uses protobuf serialization
// Version2 certificates are ipv4 or ipv6 and uses asn.1 serialization
Version() Version
// Name is the human-readable name that identifies this certificate.
Name() string
// Networks is a list of ip addresses and network sizes assigned to this certificate.
// If IsCA is true then certificates signed by this CA can only have ip addresses and
// networks that are contained by an entry in this list.
Networks() []netip.Prefix
// UnsafeNetworks is a list of networks that this host can act as an unsafe router for.
// If IsCA is true then certificates signed by this CA can only have networks that are
// contained by an entry in this list.
UnsafeNetworks() []netip.Prefix
// Groups is a list of identities that can be used to write more general firewall rule
// definitions.
// If IsCA is true then certificates signed by this CA can only use groups that are
// in this list.
Groups() []string
// IsCA signifies if this is a certificate authority (true) or a host certificate (false).
// It is invalid to use a CA certificate as a host certificate.
IsCA() bool
// NotBefore is the time at which this certificate becomes valid.
// If IsCA is true then certificate signed by this CA can not have a time before this.
NotBefore() time.Time
// NotAfter is the time at which this certificate becomes invalid.
// If IsCA is true then certificate signed by this CA can not have a time after this.
NotAfter() time.Time
// Issuer is the fingerprint of the CA that signed this certificate.
// If IsCA is true then this will be empty.
Issuer() string
// PublicKey is the raw bytes to be used in asymmetric cryptographic operations.
PublicKey() []byte
// Curve identifies which curve was used for the PublicKey and Signature.
Curve() Curve
// Signature is the cryptographic seal for all the details of this certificate.
// CheckSignature can be used to verify that the details of this certificate are valid.
Signature() []byte
// CheckSignature will check that the certificate Signature() matches the
// computed signature. A true result means this certificate has not been tampered with.
CheckSignature(signingPublicKey []byte) bool
// Fingerprint returns the hex encoded sha256 sum of the certificate.
// This acts as a unique fingerprint and can be used to blocklist certificates.
Fingerprint() (string, error)
// Expired tests if the certificate is valid for the provided time.
Expired(t time.Time) bool
// VerifyPrivateKey returns an error if the private key is not a pair with the certificates public key.
VerifyPrivateKey(curve Curve, privateKey []byte) error
// Marshal will return the byte representation of this certificate
// This is primarily the format transmitted on the wire.
Marshal() ([]byte, error)
// MarshalForHandshakes prepares the bytes needed to use directly in a handshake
MarshalForHandshakes() ([]byte, error)
// MarshalPEM will return a PEM encoded representation of this certificate
// This is primarily the format stored on disk
MarshalPEM() ([]byte, error)
// MarshalJSON will return the json representation of this certificate
MarshalJSON() ([]byte, error)
// String will return a human-readable representation of this certificate
String() string
// Copy creates a copy of the certificate
Copy() Certificate
}
// CachedCertificate represents a verified certificate with some cached fields to improve
// performance.
type CachedCertificate struct {
Certificate Certificate
InvertedGroups map[string]struct{}
Fingerprint string
signerFingerprint string
}
func (cc *CachedCertificate) String() string {
return cc.Certificate.String()
}
// RecombineAndValidate will attempt to unmarshal a certificate received in a handshake.
// Handshakes save space by placing the peers public key in a different part of the packet, we have to
// reassemble the actual certificate structure with that in mind.
func RecombineAndValidate(v Version, rawCertBytes, publicKey []byte, curve Curve, caPool *CAPool) (*CachedCertificate, error) {
if publicKey == nil {
return nil, ErrNoPeerStaticKey
}
if rawCertBytes == nil {
return nil, ErrNoPayload
}
c, err := unmarshalCertificateFromHandshake(v, rawCertBytes, publicKey, curve)
if err != nil {
return nil, fmt.Errorf("error unmarshaling cert: %w", err)
}
cc, err := caPool.VerifyCertificate(time.Now(), c)
if err != nil {
return nil, fmt.Errorf("certificate validation failed: %w", err)
}
return cc, nil
}
func unmarshalCertificateFromHandshake(v Version, b []byte, publicKey []byte, curve Curve) (Certificate, error) {
var c Certificate
var err error
switch v {
case VersionPre1, Version1:
c, err = unmarshalCertificateV1(b, publicKey)
case Version2:
c, err = unmarshalCertificateV2(b, publicKey, curve)
default:
//TODO: make a static var
return nil, fmt.Errorf("unknown certificate version %d", v)
}
if err != nil {
return nil, err
}
if c.Curve() != curve {
return nil, fmt.Errorf("certificate curve %s does not match expected %s", c.Curve().String(), curve.String())
}
return c, nil
}