nebula/remote_list.go

696 lines
19 KiB
Go

package nebula
import (
"context"
"net"
"net/netip"
"sort"
"strconv"
"sync"
"sync/atomic"
"time"
"github.com/sirupsen/logrus"
)
// forEachFunc is used to benefit folks that want to do work inside the lock
type forEachFunc func(addr netip.AddrPort, preferred bool)
// The checkFuncs here are to simplify bulk importing LH query response logic into a single function (reset slice and iterate)
type checkFuncV4 func(vpnIp netip.Addr, to *Ip4AndPort) bool
type checkFuncV6 func(vpnIp netip.Addr, to *Ip6AndPort) bool
// CacheMap is a struct that better represents the lighthouse cache for humans
// The string key is the owners vpnIp
type CacheMap map[string]*Cache
// Cache is the other part of CacheMap to better represent the lighthouse cache for humans
// We don't reason about ipv4 vs ipv6 here
type Cache struct {
Learned []netip.AddrPort `json:"learned,omitempty"`
Reported []netip.AddrPort `json:"reported,omitempty"`
Relay []netip.Addr `json:"relay"`
}
//TODO: Seems like we should plop static host entries in here too since the are protected by the lighthouse from deletion
// We will never clean learned/reported information for them as it stands today
// cache is an internal struct that splits v4 and v6 addresses inside the cache map
type cache struct {
v4 *cacheV4
v6 *cacheV6
relay *cacheRelay
}
type cacheRelay struct {
relay []netip.Addr
}
// cacheV4 stores learned and reported ipv4 records under cache
type cacheV4 struct {
learned *Ip4AndPort
reported []*Ip4AndPort
}
// cacheV4 stores learned and reported ipv6 records under cache
type cacheV6 struct {
learned *Ip6AndPort
reported []*Ip6AndPort
}
type hostnamePort struct {
name string
port uint16
}
type hostnamesResults struct {
hostnames []hostnamePort
network string
lookupTimeout time.Duration
cancelFn func()
l *logrus.Logger
ips atomic.Pointer[map[netip.AddrPort]struct{}]
}
func NewHostnameResults(ctx context.Context, l *logrus.Logger, d time.Duration, network string, timeout time.Duration, hostPorts []string, onUpdate func()) (*hostnamesResults, error) {
r := &hostnamesResults{
hostnames: make([]hostnamePort, len(hostPorts)),
network: network,
lookupTimeout: timeout,
l: l,
}
// Fastrack IP addresses to ensure they're immediately available for use.
// DNS lookups for hostnames that aren't hardcoded IP's will happen in a background goroutine.
performBackgroundLookup := false
ips := map[netip.AddrPort]struct{}{}
for idx, hostPort := range hostPorts {
rIp, sPort, err := net.SplitHostPort(hostPort)
if err != nil {
return nil, err
}
iPort, err := strconv.Atoi(sPort)
if err != nil {
return nil, err
}
r.hostnames[idx] = hostnamePort{name: rIp, port: uint16(iPort)}
addr, err := netip.ParseAddr(rIp)
if err != nil {
// This address is a hostname, not an IP address
performBackgroundLookup = true
continue
}
// Save the IP address immediately
ips[netip.AddrPortFrom(addr, uint16(iPort))] = struct{}{}
}
r.ips.Store(&ips)
// Time for the DNS lookup goroutine
if performBackgroundLookup {
newCtx, cancel := context.WithCancel(ctx)
r.cancelFn = cancel
ticker := time.NewTicker(d)
go func() {
defer ticker.Stop()
for {
netipAddrs := map[netip.AddrPort]struct{}{}
for _, hostPort := range r.hostnames {
timeoutCtx, timeoutCancel := context.WithTimeout(ctx, r.lookupTimeout)
addrs, err := net.DefaultResolver.LookupNetIP(timeoutCtx, r.network, hostPort.name)
timeoutCancel()
if err != nil {
l.WithFields(logrus.Fields{"hostname": hostPort.name, "network": r.network}).WithError(err).Error("DNS resolution failed for static_map host")
continue
}
for _, a := range addrs {
netipAddrs[netip.AddrPortFrom(a.Unmap(), hostPort.port)] = struct{}{}
}
}
origSet := r.ips.Load()
different := false
for a := range *origSet {
if _, ok := netipAddrs[a]; !ok {
different = true
break
}
}
if !different {
for a := range netipAddrs {
if _, ok := (*origSet)[a]; !ok {
different = true
break
}
}
}
if different {
l.WithFields(logrus.Fields{"origSet": origSet, "newSet": netipAddrs}).Info("DNS results changed for host list")
r.ips.Store(&netipAddrs)
onUpdate()
}
select {
case <-newCtx.Done():
return
case <-ticker.C:
continue
}
}
}()
}
return r, nil
}
func (hr *hostnamesResults) Cancel() {
if hr != nil && hr.cancelFn != nil {
hr.cancelFn()
}
}
func (hr *hostnamesResults) GetIPs() []netip.AddrPort {
var retSlice []netip.AddrPort
if hr != nil {
p := hr.ips.Load()
if p != nil {
for k := range *p {
retSlice = append(retSlice, k)
}
}
}
return retSlice
}
// RemoteList is a unifying concept for lighthouse servers and clients as well as hostinfos.
// It serves as a local cache of query replies, host update notifications, and locally learned addresses
type RemoteList struct {
// Every interaction with internals requires a lock!
sync.RWMutex
// A deduplicated set of addresses. Any accessor should lock beforehand.
addrs []netip.AddrPort
// A set of relay addresses. VpnIp addresses that the remote identified as relays.
relays []netip.Addr
// These are maps to store v4 and v6 addresses per lighthouse
// Map key is the vpnIp of the person that told us about this the cached entries underneath.
// For learned addresses, this is the vpnIp that sent the packet
cache map[netip.Addr]*cache
hr *hostnamesResults
shouldAdd func(netip.Addr) bool
// This is a list of remotes that we have tried to handshake with and have returned from the wrong vpn ip.
// They should not be tried again during a handshake
badRemotes []netip.AddrPort
// A flag that the cache may have changed and addrs needs to be rebuilt
shouldRebuild bool
}
// NewRemoteList creates a new empty RemoteList
func NewRemoteList(shouldAdd func(netip.Addr) bool) *RemoteList {
return &RemoteList{
addrs: make([]netip.AddrPort, 0),
relays: make([]netip.Addr, 0),
cache: make(map[netip.Addr]*cache),
shouldAdd: shouldAdd,
}
}
func (r *RemoteList) unlockedSetHostnamesResults(hr *hostnamesResults) {
// Cancel any existing hostnamesResults DNS goroutine to release resources
r.hr.Cancel()
r.hr = hr
}
// Len locks and reports the size of the deduplicated address list
// The deduplication work may need to occur here, so you must pass preferredRanges
func (r *RemoteList) Len(preferredRanges []netip.Prefix) int {
r.Rebuild(preferredRanges)
r.RLock()
defer r.RUnlock()
return len(r.addrs)
}
// ForEach locks and will call the forEachFunc for every deduplicated address in the list
// The deduplication work may need to occur here, so you must pass preferredRanges
func (r *RemoteList) ForEach(preferredRanges []netip.Prefix, forEach forEachFunc) {
r.Rebuild(preferredRanges)
r.RLock()
for _, v := range r.addrs {
forEach(v, isPreferred(v.Addr(), preferredRanges))
}
r.RUnlock()
}
// CopyAddrs locks and makes a deep copy of the deduplicated address list
// The deduplication work may need to occur here, so you must pass preferredRanges
func (r *RemoteList) CopyAddrs(preferredRanges []netip.Prefix) []netip.AddrPort {
if r == nil {
return nil
}
r.Rebuild(preferredRanges)
r.RLock()
defer r.RUnlock()
c := make([]netip.AddrPort, len(r.addrs))
for i, v := range r.addrs {
c[i] = v
}
return c
}
// LearnRemote locks and sets the learned slot for the owner vpn ip to the provided addr
// Currently this is only needed when HostInfo.SetRemote is called as that should cover both handshaking and roaming.
// It will mark the deduplicated address list as dirty, so do not call it unless new information is available
// TODO: this needs to support the allow list list
func (r *RemoteList) LearnRemote(ownerVpnIp netip.Addr, remote netip.AddrPort) {
r.Lock()
defer r.Unlock()
if remote.Addr().Is4() {
r.unlockedSetLearnedV4(ownerVpnIp, NewIp4AndPortFromNetIP(remote.Addr(), remote.Port()))
} else {
r.unlockedSetLearnedV6(ownerVpnIp, NewIp6AndPortFromNetIP(remote.Addr(), remote.Port()))
}
}
// CopyCache locks and creates a more human friendly form of the internal address cache.
// This may contain duplicates and blocked addresses
func (r *RemoteList) CopyCache() *CacheMap {
r.RLock()
defer r.RUnlock()
cm := make(CacheMap)
getOrMake := func(vpnIp string) *Cache {
c := cm[vpnIp]
if c == nil {
c = &Cache{
Learned: make([]netip.AddrPort, 0),
Reported: make([]netip.AddrPort, 0),
Relay: make([]netip.Addr, 0),
}
cm[vpnIp] = c
}
return c
}
for owner, mc := range r.cache {
c := getOrMake(owner.String())
if mc.v4 != nil {
if mc.v4.learned != nil {
c.Learned = append(c.Learned, AddrPortFromIp4AndPort(mc.v4.learned))
}
for _, a := range mc.v4.reported {
c.Reported = append(c.Reported, AddrPortFromIp4AndPort(a))
}
}
if mc.v6 != nil {
if mc.v6.learned != nil {
c.Learned = append(c.Learned, AddrPortFromIp6AndPort(mc.v6.learned))
}
for _, a := range mc.v6.reported {
c.Reported = append(c.Reported, AddrPortFromIp6AndPort(a))
}
}
if mc.relay != nil {
for _, a := range mc.relay.relay {
c.Relay = append(c.Relay, a)
}
}
}
return &cm
}
// BlockRemote locks and records the address as bad, it will be excluded from the deduplicated address list
func (r *RemoteList) BlockRemote(bad netip.AddrPort) {
if !bad.IsValid() {
// relays can have nil udp Addrs
return
}
r.Lock()
defer r.Unlock()
// Check if we already blocked this addr
if r.unlockedIsBad(bad) {
return
}
// We copy here because we are taking something else's memory and we can't trust everything
r.badRemotes = append(r.badRemotes, bad)
// Mark the next interaction must recollect/dedupe
r.shouldRebuild = true
}
// CopyBlockedRemotes locks and makes a deep copy of the blocked remotes list
func (r *RemoteList) CopyBlockedRemotes() []netip.AddrPort {
r.RLock()
defer r.RUnlock()
c := make([]netip.AddrPort, len(r.badRemotes))
for i, v := range r.badRemotes {
c[i] = v
}
return c
}
// ResetBlockedRemotes locks and clears the blocked remotes list
func (r *RemoteList) ResetBlockedRemotes() {
r.Lock()
r.badRemotes = nil
r.Unlock()
}
// Rebuild locks and generates the deduplicated address list only if there is work to be done
// There is generally no reason to call this directly but it is safe to do so
func (r *RemoteList) Rebuild(preferredRanges []netip.Prefix) {
r.Lock()
defer r.Unlock()
// Only rebuild if the cache changed
//TODO: shouldRebuild is probably pointless as we don't check for actual change when lighthouse updates come in
if r.shouldRebuild {
r.unlockedCollect()
r.shouldRebuild = false
}
// Always re-sort, preferredRanges can change via HUP
r.unlockedSort(preferredRanges)
}
// unlockedIsBad assumes you have the write lock and checks if the remote matches any entry in the blocked address list
func (r *RemoteList) unlockedIsBad(remote netip.AddrPort) bool {
for _, v := range r.badRemotes {
if v == remote {
return true
}
}
return false
}
// unlockedSetLearnedV4 assumes you have the write lock and sets the current learned address for this owner and marks the
// deduplicated address list as dirty
func (r *RemoteList) unlockedSetLearnedV4(ownerVpnIp netip.Addr, to *Ip4AndPort) {
r.shouldRebuild = true
r.unlockedGetOrMakeV4(ownerVpnIp).learned = to
}
// unlockedSetV4 assumes you have the write lock and resets the reported list of ips for this owner to the list provided
// and marks the deduplicated address list as dirty
func (r *RemoteList) unlockedSetV4(ownerVpnIp, vpnIp netip.Addr, to []*Ip4AndPort, check checkFuncV4) {
r.shouldRebuild = true
c := r.unlockedGetOrMakeV4(ownerVpnIp)
// Reset the slice
c.reported = c.reported[:0]
// We can't take their array but we can take their pointers
for _, v := range to[:minInt(len(to), MaxRemotes)] {
if check(vpnIp, v) {
c.reported = append(c.reported, v)
}
}
}
func (r *RemoteList) unlockedSetRelay(ownerVpnIp, vpnIp netip.Addr, to []netip.Addr) {
r.shouldRebuild = true
c := r.unlockedGetOrMakeRelay(ownerVpnIp)
// Reset the slice
c.relay = c.relay[:0]
// We can't take their array but we can take their pointers
c.relay = append(c.relay, to[:minInt(len(to), MaxRemotes)]...)
}
// unlockedPrependV4 assumes you have the write lock and prepends the address in the reported list for this owner
// This is only useful for establishing static hosts
func (r *RemoteList) unlockedPrependV4(ownerVpnIp netip.Addr, to *Ip4AndPort) {
r.shouldRebuild = true
c := r.unlockedGetOrMakeV4(ownerVpnIp)
// We are doing the easy append because this is rarely called
c.reported = append([]*Ip4AndPort{to}, c.reported...)
if len(c.reported) > MaxRemotes {
c.reported = c.reported[:MaxRemotes]
}
}
// unlockedSetLearnedV6 assumes you have the write lock and sets the current learned address for this owner and marks the
// deduplicated address list as dirty
func (r *RemoteList) unlockedSetLearnedV6(ownerVpnIp netip.Addr, to *Ip6AndPort) {
r.shouldRebuild = true
r.unlockedGetOrMakeV6(ownerVpnIp).learned = to
}
// unlockedSetV6 assumes you have the write lock and resets the reported list of ips for this owner to the list provided
// and marks the deduplicated address list as dirty
func (r *RemoteList) unlockedSetV6(ownerVpnIp, vpnIp netip.Addr, to []*Ip6AndPort, check checkFuncV6) {
r.shouldRebuild = true
c := r.unlockedGetOrMakeV6(ownerVpnIp)
// Reset the slice
c.reported = c.reported[:0]
// We can't take their array but we can take their pointers
for _, v := range to[:minInt(len(to), MaxRemotes)] {
if check(vpnIp, v) {
c.reported = append(c.reported, v)
}
}
}
// unlockedPrependV6 assumes you have the write lock and prepends the address in the reported list for this owner
// This is only useful for establishing static hosts
func (r *RemoteList) unlockedPrependV6(ownerVpnIp netip.Addr, to *Ip6AndPort) {
r.shouldRebuild = true
c := r.unlockedGetOrMakeV6(ownerVpnIp)
// We are doing the easy append because this is rarely called
c.reported = append([]*Ip6AndPort{to}, c.reported...)
if len(c.reported) > MaxRemotes {
c.reported = c.reported[:MaxRemotes]
}
}
func (r *RemoteList) unlockedGetOrMakeRelay(ownerVpnIp netip.Addr) *cacheRelay {
am := r.cache[ownerVpnIp]
if am == nil {
am = &cache{}
r.cache[ownerVpnIp] = am
}
// Avoid occupying memory for relay if we never have any
if am.relay == nil {
am.relay = &cacheRelay{}
}
return am.relay
}
// unlockedGetOrMakeV4 assumes you have the write lock and builds the cache and owner entry. Only the v4 pointer is established.
// The caller must dirty the learned address cache if required
func (r *RemoteList) unlockedGetOrMakeV4(ownerVpnIp netip.Addr) *cacheV4 {
am := r.cache[ownerVpnIp]
if am == nil {
am = &cache{}
r.cache[ownerVpnIp] = am
}
// Avoid occupying memory for v6 addresses if we never have any
if am.v4 == nil {
am.v4 = &cacheV4{}
}
return am.v4
}
// unlockedGetOrMakeV6 assumes you have the write lock and builds the cache and owner entry. Only the v6 pointer is established.
// The caller must dirty the learned address cache if required
func (r *RemoteList) unlockedGetOrMakeV6(ownerVpnIp netip.Addr) *cacheV6 {
am := r.cache[ownerVpnIp]
if am == nil {
am = &cache{}
r.cache[ownerVpnIp] = am
}
// Avoid occupying memory for v4 addresses if we never have any
if am.v6 == nil {
am.v6 = &cacheV6{}
}
return am.v6
}
// unlockedCollect assumes you have the write lock and collects/transforms the cache into the deduped address list.
// The result of this function can contain duplicates. unlockedSort handles cleaning it.
func (r *RemoteList) unlockedCollect() {
addrs := r.addrs[:0]
relays := r.relays[:0]
for _, c := range r.cache {
if c.v4 != nil {
if c.v4.learned != nil {
u := AddrPortFromIp4AndPort(c.v4.learned)
if !r.unlockedIsBad(u) {
addrs = append(addrs, u)
}
}
for _, v := range c.v4.reported {
u := AddrPortFromIp4AndPort(v)
if !r.unlockedIsBad(u) {
addrs = append(addrs, u)
}
}
}
if c.v6 != nil {
if c.v6.learned != nil {
u := AddrPortFromIp6AndPort(c.v6.learned)
if !r.unlockedIsBad(u) {
addrs = append(addrs, u)
}
}
for _, v := range c.v6.reported {
u := AddrPortFromIp6AndPort(v)
if !r.unlockedIsBad(u) {
addrs = append(addrs, u)
}
}
}
if c.relay != nil {
for _, v := range c.relay.relay {
relays = append(relays, v)
}
}
}
dnsAddrs := r.hr.GetIPs()
for _, addr := range dnsAddrs {
if r.shouldAdd == nil || r.shouldAdd(addr.Addr()) {
addrs = append(addrs, addr)
}
}
r.addrs = addrs
r.relays = relays
}
// unlockedSort assumes you have the write lock and performs the deduping and sorting of the address list
func (r *RemoteList) unlockedSort(preferredRanges []netip.Prefix) {
n := len(r.addrs)
if n < 2 {
return
}
lessFunc := func(i, j int) bool {
a := r.addrs[i]
b := r.addrs[j]
// Preferred addresses first
aPref := isPreferred(a.Addr(), preferredRanges)
bPref := isPreferred(b.Addr(), preferredRanges)
switch {
case aPref && !bPref:
// If i is preferred and j is not, i is less than j
return true
case !aPref && bPref:
// If j is preferred then i is not due to the else, i is not less than j
return false
default:
// Both i an j are either preferred or not, sort within that
}
// ipv6 addresses 2nd
a4 := a.Addr().Is4()
b4 := b.Addr().Is4()
switch {
case a4 == false && b4 == true:
// If i is v6 and j is v4, i is less than j
return true
case a4 == true && b4 == false:
// If j is v6 and i is v4, i is not less than j
return false
case a4 == true && b4 == true:
// i and j are both ipv4
aPrivate := a.Addr().IsPrivate()
bPrivate := b.Addr().IsPrivate()
switch {
case !aPrivate && bPrivate:
// If i is a public ip (not private) and j is a private ip, i is less then j
return true
case aPrivate && !bPrivate:
// If j is public (not private) then i is private due to the else, i is not less than j
return false
default:
// Both i an j are either public or private, sort within that
}
default:
// Both i an j are either ipv4 or ipv6, sort within that
}
// lexical order of ips 3rd
c := a.Addr().Compare(b.Addr())
if c == 0 {
// Ips are the same, Lexical order of ports 4th
return a.Port() < b.Port()
}
// Ip wasn't the same
return c < 0
}
// Sort it
sort.Slice(r.addrs, lessFunc)
// Deduplicate
a, b := 0, 1
for b < n {
if r.addrs[a] != r.addrs[b] {
a++
if a != b {
r.addrs[a], r.addrs[b] = r.addrs[b], r.addrs[a]
}
}
b++
}
r.addrs = r.addrs[:a+1]
return
}
// minInt returns the minimum integer of a or b
func minInt(a, b int) int {
if a < b {
return a
}
return b
}
// isPreferred returns true of the ip is contained in the preferredRanges list
func isPreferred(ip netip.Addr, preferredRanges []netip.Prefix) bool {
//TODO: this would be better in a CIDR6Tree
for _, p := range preferredRanges {
if p.Contains(ip) {
return true
}
}
return false
}