nebula/hostmap.go

905 lines
25 KiB
Go

package nebula
import (
"context"
"errors"
"fmt"
"net"
"sync"
"sync/atomic"
"time"
"github.com/rcrowley/go-metrics"
"github.com/sirupsen/logrus"
"github.com/slackhq/nebula/cert"
"github.com/slackhq/nebula/cidr"
"github.com/slackhq/nebula/header"
"github.com/slackhq/nebula/iputil"
"github.com/slackhq/nebula/udp"
)
// const ProbeLen = 100
const PromoteEvery = 1000
const ReQueryEvery = 5000
const MaxRemotes = 10
// MaxHostInfosPerVpnIp is the max number of hostinfos we will track for a given vpn ip
// 5 allows for an initial handshake and each host pair re-handshaking twice
const MaxHostInfosPerVpnIp = 5
// How long we should prevent roaming back to the previous IP.
// This helps prevent flapping due to packets already in flight
const RoamingSuppressSeconds = 2
const (
Requested = iota
Established
)
const (
Unknowntype = iota
ForwardingType
TerminalType
)
type Relay struct {
Type int
State int
LocalIndex uint32
RemoteIndex uint32
PeerIp iputil.VpnIp
}
type HostMap struct {
sync.RWMutex //Because we concurrently read and write to our maps
name string
Indexes map[uint32]*HostInfo
Relays map[uint32]*HostInfo // Maps a Relay IDX to a Relay HostInfo object
RemoteIndexes map[uint32]*HostInfo
Hosts map[iputil.VpnIp]*HostInfo
preferredRanges []*net.IPNet
vpnCIDR *net.IPNet
metricsEnabled bool
l *logrus.Logger
}
// For synchronization, treat the pointed-to Relay struct as immutable. To edit the Relay
// struct, make a copy of an existing value, edit the fileds in the copy, and
// then store a pointer to the new copy in both realyForBy* maps.
type RelayState struct {
sync.RWMutex
relays map[iputil.VpnIp]struct{} // Set of VpnIp's of Hosts to use as relays to access this peer
relayForByIp map[iputil.VpnIp]*Relay // Maps VpnIps of peers for which this HostInfo is a relay to some Relay info
relayForByIdx map[uint32]*Relay // Maps a local index to some Relay info
}
func (rs *RelayState) DeleteRelay(ip iputil.VpnIp) {
rs.Lock()
defer rs.Unlock()
delete(rs.relays, ip)
}
func (rs *RelayState) GetRelayForByIp(ip iputil.VpnIp) (*Relay, bool) {
rs.RLock()
defer rs.RUnlock()
r, ok := rs.relayForByIp[ip]
return r, ok
}
func (rs *RelayState) InsertRelayTo(ip iputil.VpnIp) {
rs.Lock()
defer rs.Unlock()
rs.relays[ip] = struct{}{}
}
func (rs *RelayState) CopyRelayIps() []iputil.VpnIp {
rs.RLock()
defer rs.RUnlock()
ret := make([]iputil.VpnIp, 0, len(rs.relays))
for ip := range rs.relays {
ret = append(ret, ip)
}
return ret
}
func (rs *RelayState) CopyRelayForIps() []iputil.VpnIp {
rs.RLock()
defer rs.RUnlock()
currentRelays := make([]iputil.VpnIp, 0, len(rs.relayForByIp))
for relayIp := range rs.relayForByIp {
currentRelays = append(currentRelays, relayIp)
}
return currentRelays
}
func (rs *RelayState) CopyRelayForIdxs() []uint32 {
rs.RLock()
defer rs.RUnlock()
ret := make([]uint32, 0, len(rs.relayForByIdx))
for i := range rs.relayForByIdx {
ret = append(ret, i)
}
return ret
}
func (rs *RelayState) RemoveRelay(localIdx uint32) (iputil.VpnIp, bool) {
rs.Lock()
defer rs.Unlock()
r, ok := rs.relayForByIdx[localIdx]
if !ok {
return iputil.VpnIp(0), false
}
delete(rs.relayForByIdx, localIdx)
delete(rs.relayForByIp, r.PeerIp)
return r.PeerIp, true
}
func (rs *RelayState) CompleteRelayByIP(vpnIp iputil.VpnIp, remoteIdx uint32) bool {
rs.Lock()
defer rs.Unlock()
r, ok := rs.relayForByIp[vpnIp]
if !ok {
return false
}
newRelay := *r
newRelay.State = Established
newRelay.RemoteIndex = remoteIdx
rs.relayForByIdx[r.LocalIndex] = &newRelay
rs.relayForByIp[r.PeerIp] = &newRelay
return true
}
func (rs *RelayState) CompleteRelayByIdx(localIdx uint32, remoteIdx uint32) (*Relay, bool) {
rs.Lock()
defer rs.Unlock()
r, ok := rs.relayForByIdx[localIdx]
if !ok {
return nil, false
}
newRelay := *r
newRelay.State = Established
newRelay.RemoteIndex = remoteIdx
rs.relayForByIdx[r.LocalIndex] = &newRelay
rs.relayForByIp[r.PeerIp] = &newRelay
return &newRelay, true
}
func (rs *RelayState) QueryRelayForByIp(vpnIp iputil.VpnIp) (*Relay, bool) {
rs.RLock()
defer rs.RUnlock()
r, ok := rs.relayForByIp[vpnIp]
return r, ok
}
func (rs *RelayState) QueryRelayForByIdx(idx uint32) (*Relay, bool) {
rs.RLock()
defer rs.RUnlock()
r, ok := rs.relayForByIdx[idx]
return r, ok
}
func (rs *RelayState) InsertRelay(ip iputil.VpnIp, idx uint32, r *Relay) {
rs.Lock()
defer rs.Unlock()
rs.relayForByIp[ip] = r
rs.relayForByIdx[idx] = r
}
type HostInfo struct {
sync.RWMutex
remote *udp.Addr
remotes *RemoteList
promoteCounter atomic.Uint32
ConnectionState *ConnectionState
handshakeStart time.Time //todo: this an entry in the handshake manager
HandshakeReady bool //todo: being in the manager means you are ready
HandshakeCounter int //todo: another handshake manager entry
HandshakeLastRemotes []*udp.Addr //todo: another handshake manager entry, which remotes we sent to last time
HandshakeComplete bool //todo: this should go away in favor of ConnectionState.ready
HandshakePacket map[uint8][]byte //todo: this is other handshake manager entry
packetStore []*cachedPacket //todo: this is other handshake manager entry
remoteIndexId uint32
localIndexId uint32
vpnIp iputil.VpnIp
recvError int
remoteCidr *cidr.Tree4
relayState RelayState
// lastRebindCount is the other side of Interface.rebindCount, if these values don't match then we need to ask LH
// for a punch from the remote end of this tunnel. The goal being to prime their conntrack for our traffic just like
// with a handshake
lastRebindCount int8
// lastHandshakeTime records the time the remote side told us about at the stage when the handshake was completed locally
// Stage 1 packet will contain it if I am a responder, stage 2 packet if I am an initiator
// This is used to avoid an attack where a handshake packet is replayed after some time
lastHandshakeTime uint64
lastRoam time.Time
lastRoamRemote *udp.Addr
// Used to track other hostinfos for this vpn ip since only 1 can be primary
// Synchronised via hostmap lock and not the hostinfo lock.
next, prev *HostInfo
}
type ViaSender struct {
relayHI *HostInfo // relayHI is the host info object of the relay
remoteIdx uint32 // remoteIdx is the index included in the header of the received packet
relay *Relay // relay contains the rest of the relay information, including the PeerIP of the host trying to communicate with us.
}
type cachedPacket struct {
messageType header.MessageType
messageSubType header.MessageSubType
callback packetCallback
packet []byte
}
type packetCallback func(t header.MessageType, st header.MessageSubType, h *HostInfo, p, nb, out []byte)
type cachedPacketMetrics struct {
sent metrics.Counter
dropped metrics.Counter
}
func NewHostMap(l *logrus.Logger, name string, vpnCIDR *net.IPNet, preferredRanges []*net.IPNet) *HostMap {
h := map[iputil.VpnIp]*HostInfo{}
i := map[uint32]*HostInfo{}
r := map[uint32]*HostInfo{}
relays := map[uint32]*HostInfo{}
m := HostMap{
name: name,
Indexes: i,
Relays: relays,
RemoteIndexes: r,
Hosts: h,
preferredRanges: preferredRanges,
vpnCIDR: vpnCIDR,
l: l,
}
return &m
}
// UpdateStats takes a name and reports host and index counts to the stats collection system
func (hm *HostMap) EmitStats(name string) {
hm.RLock()
hostLen := len(hm.Hosts)
indexLen := len(hm.Indexes)
remoteIndexLen := len(hm.RemoteIndexes)
relaysLen := len(hm.Relays)
hm.RUnlock()
metrics.GetOrRegisterGauge("hostmap."+name+".hosts", nil).Update(int64(hostLen))
metrics.GetOrRegisterGauge("hostmap."+name+".indexes", nil).Update(int64(indexLen))
metrics.GetOrRegisterGauge("hostmap."+name+".remoteIndexes", nil).Update(int64(remoteIndexLen))
metrics.GetOrRegisterGauge("hostmap."+name+".relayIndexes", nil).Update(int64(relaysLen))
}
func (hm *HostMap) RemoveRelay(localIdx uint32) {
hm.Lock()
hiRelay, ok := hm.Relays[localIdx]
if !ok {
hm.Unlock()
return
}
delete(hm.Relays, localIdx)
hm.Unlock()
ip, ok := hiRelay.relayState.RemoveRelay(localIdx)
if !ok {
return
}
hiPeer, err := hm.QueryVpnIp(ip)
if err != nil {
return
}
var otherPeerIdx uint32
hiPeer.relayState.DeleteRelay(hiRelay.vpnIp)
relay, ok := hiPeer.relayState.GetRelayForByIp(hiRelay.vpnIp)
if ok {
otherPeerIdx = relay.LocalIndex
}
// I am a relaying host. I need to remove the other relay, too.
hm.RemoveRelay(otherPeerIdx)
}
func (hm *HostMap) GetIndexByVpnIp(vpnIp iputil.VpnIp) (uint32, error) {
hm.RLock()
if i, ok := hm.Hosts[vpnIp]; ok {
index := i.localIndexId
hm.RUnlock()
return index, nil
}
hm.RUnlock()
return 0, errors.New("vpn IP not found")
}
func (hm *HostMap) Add(ip iputil.VpnIp, hostinfo *HostInfo) {
hm.Lock()
hm.Hosts[ip] = hostinfo
hm.Unlock()
}
func (hm *HostMap) AddVpnIp(vpnIp iputil.VpnIp, init func(hostinfo *HostInfo)) (hostinfo *HostInfo, created bool) {
hm.RLock()
if h, ok := hm.Hosts[vpnIp]; !ok {
hm.RUnlock()
h = &HostInfo{
vpnIp: vpnIp,
HandshakePacket: make(map[uint8][]byte, 0),
relayState: RelayState{
relays: map[iputil.VpnIp]struct{}{},
relayForByIp: map[iputil.VpnIp]*Relay{},
relayForByIdx: map[uint32]*Relay{},
},
}
if init != nil {
init(h)
}
hm.Lock()
hm.Hosts[vpnIp] = h
hm.Unlock()
return h, true
} else {
hm.RUnlock()
return h, false
}
}
// Only used by pendingHostMap when the remote index is not initially known
func (hm *HostMap) addRemoteIndexHostInfo(index uint32, h *HostInfo) {
hm.Lock()
h.remoteIndexId = index
hm.RemoteIndexes[index] = h
hm.Unlock()
if hm.l.Level > logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "indexNumber": index, "mapTotalSize": len(hm.Indexes),
"hostinfo": m{"existing": true, "localIndexId": h.localIndexId, "hostId": h.vpnIp}}).
Debug("Hostmap remoteIndex added")
}
}
// DeleteReverseIndex is used to clean up on recv_error
// This function should only ever be called on the pending hostmap
func (hm *HostMap) DeleteReverseIndex(index uint32) {
hm.Lock()
hostinfo, ok := hm.RemoteIndexes[index]
if ok {
delete(hm.Indexes, hostinfo.localIndexId)
delete(hm.RemoteIndexes, index)
// Check if we have an entry under hostId that matches the same hostinfo
// instance. Clean it up as well if we do (they might not match in pendingHostmap)
var hostinfo2 *HostInfo
hostinfo2, ok = hm.Hosts[hostinfo.vpnIp]
if ok && hostinfo2 == hostinfo {
delete(hm.Hosts, hostinfo.vpnIp)
}
}
hm.Unlock()
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "indexNumber": index, "mapTotalSize": len(hm.Indexes)}).
Debug("Hostmap remote index deleted")
}
}
// DeleteHostInfo will fully unlink the hostinfo and return true if it was the final hostinfo for this vpn ip
func (hm *HostMap) DeleteHostInfo(hostinfo *HostInfo) bool {
// Delete the host itself, ensuring it's not modified anymore
hm.Lock()
// If we have a previous or next hostinfo then we are not the last one for this vpn ip
final := (hostinfo.next == nil && hostinfo.prev == nil)
hm.unlockedDeleteHostInfo(hostinfo)
hm.Unlock()
// And tear down all the relays going through this host, if final
for _, localIdx := range hostinfo.relayState.CopyRelayForIdxs() {
hm.RemoveRelay(localIdx)
}
if final {
// And tear down the relays this deleted hostInfo was using to be reached
teardownRelayIdx := []uint32{}
for _, relayIp := range hostinfo.relayState.CopyRelayIps() {
relayHostInfo, err := hm.QueryVpnIp(relayIp)
if err != nil {
hm.l.WithError(err).WithField("relay", relayIp).Info("Missing relay host in hostmap")
} else {
if r, ok := relayHostInfo.relayState.QueryRelayForByIp(hostinfo.vpnIp); ok {
teardownRelayIdx = append(teardownRelayIdx, r.LocalIndex)
}
}
}
for _, localIdx := range teardownRelayIdx {
hm.RemoveRelay(localIdx)
}
}
return final
}
func (hm *HostMap) DeleteRelayIdx(localIdx uint32) {
hm.Lock()
defer hm.Unlock()
delete(hm.RemoteIndexes, localIdx)
}
func (hm *HostMap) MakePrimary(hostinfo *HostInfo) {
hm.Lock()
defer hm.Unlock()
hm.unlockedMakePrimary(hostinfo)
}
func (hm *HostMap) unlockedMakePrimary(hostinfo *HostInfo) {
oldHostinfo := hm.Hosts[hostinfo.vpnIp]
if oldHostinfo == hostinfo {
return
}
if hostinfo.prev != nil {
hostinfo.prev.next = hostinfo.next
}
if hostinfo.next != nil {
hostinfo.next.prev = hostinfo.prev
}
hm.Hosts[hostinfo.vpnIp] = hostinfo
if oldHostinfo == nil {
return
}
hostinfo.next = oldHostinfo
oldHostinfo.prev = hostinfo
hostinfo.prev = nil
}
func (hm *HostMap) unlockedDeleteHostInfo(hostinfo *HostInfo) {
primary, ok := hm.Hosts[hostinfo.vpnIp]
if ok && primary == hostinfo {
// The vpnIp pointer points to the same hostinfo as the local index id, we can remove it
delete(hm.Hosts, hostinfo.vpnIp)
if len(hm.Hosts) == 0 {
hm.Hosts = map[iputil.VpnIp]*HostInfo{}
}
if hostinfo.next != nil {
// We had more than 1 hostinfo at this vpnip, promote the next in the list to primary
hm.Hosts[hostinfo.vpnIp] = hostinfo.next
// It is primary, there is no previous hostinfo now
hostinfo.next.prev = nil
}
} else {
// Relink if we were in the middle of multiple hostinfos for this vpn ip
if hostinfo.prev != nil {
hostinfo.prev.next = hostinfo.next
}
if hostinfo.next != nil {
hostinfo.next.prev = hostinfo.prev
}
}
hostinfo.next = nil
hostinfo.prev = nil
// The remote index uses index ids outside our control so lets make sure we are only removing
// the remote index pointer here if it points to the hostinfo we are deleting
hostinfo2, ok := hm.RemoteIndexes[hostinfo.remoteIndexId]
if ok && hostinfo2 == hostinfo {
delete(hm.RemoteIndexes, hostinfo.remoteIndexId)
if len(hm.RemoteIndexes) == 0 {
hm.RemoteIndexes = map[uint32]*HostInfo{}
}
}
delete(hm.Indexes, hostinfo.localIndexId)
if len(hm.Indexes) == 0 {
hm.Indexes = map[uint32]*HostInfo{}
}
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "mapTotalSize": len(hm.Hosts),
"vpnIp": hostinfo.vpnIp, "indexNumber": hostinfo.localIndexId, "remoteIndexNumber": hostinfo.remoteIndexId}).
Debug("Hostmap hostInfo deleted")
}
}
func (hm *HostMap) QueryIndex(index uint32) (*HostInfo, error) {
//TODO: we probably just want to return bool instead of error, or at least a static error
hm.RLock()
if h, ok := hm.Indexes[index]; ok {
hm.RUnlock()
return h, nil
} else {
hm.RUnlock()
return nil, errors.New("unable to find index")
}
}
// Retrieves a HostInfo by Index. Returns whether the HostInfo is primary at time of query.
// This helper exists so that the hostinfo.prev pointer can be read while the hostmap lock is held.
func (hm *HostMap) QueryIndexIsPrimary(index uint32) (*HostInfo, bool, error) {
//TODO: we probably just want to return bool instead of error, or at least a static error
hm.RLock()
if h, ok := hm.Indexes[index]; ok {
hm.RUnlock()
return h, h.prev == nil, nil
} else {
hm.RUnlock()
return nil, false, errors.New("unable to find index")
}
}
func (hm *HostMap) QueryRelayIndex(index uint32) (*HostInfo, error) {
//TODO: we probably just want to return bool instead of error, or at least a static error
hm.RLock()
if h, ok := hm.Relays[index]; ok {
hm.RUnlock()
return h, nil
} else {
hm.RUnlock()
return nil, errors.New("unable to find index")
}
}
func (hm *HostMap) QueryReverseIndex(index uint32) (*HostInfo, error) {
hm.RLock()
if h, ok := hm.RemoteIndexes[index]; ok {
hm.RUnlock()
return h, nil
} else {
hm.RUnlock()
return nil, fmt.Errorf("unable to find reverse index or connectionstate nil in %s hostmap", hm.name)
}
}
func (hm *HostMap) QueryVpnIp(vpnIp iputil.VpnIp) (*HostInfo, error) {
return hm.queryVpnIp(vpnIp, nil)
}
// PromoteBestQueryVpnIp will attempt to lazily switch to the best remote every
// `PromoteEvery` calls to this function for a given host.
func (hm *HostMap) PromoteBestQueryVpnIp(vpnIp iputil.VpnIp, ifce *Interface) (*HostInfo, error) {
return hm.queryVpnIp(vpnIp, ifce)
}
func (hm *HostMap) queryVpnIp(vpnIp iputil.VpnIp, promoteIfce *Interface) (*HostInfo, error) {
hm.RLock()
if h, ok := hm.Hosts[vpnIp]; ok {
hm.RUnlock()
// Do not attempt promotion if you are a lighthouse
if promoteIfce != nil && !promoteIfce.lightHouse.amLighthouse {
h.TryPromoteBest(hm.preferredRanges, promoteIfce)
}
return h, nil
}
hm.RUnlock()
return nil, errors.New("unable to find host")
}
// unlockedAddHostInfo assumes you have a write-lock and will add a hostinfo object to the hostmap Indexes and RemoteIndexes maps.
// If an entry exists for the Hosts table (vpnIp -> hostinfo) then the provided hostinfo will be made primary
func (hm *HostMap) unlockedAddHostInfo(hostinfo *HostInfo, f *Interface) {
if f.serveDns {
remoteCert := hostinfo.ConnectionState.peerCert
dnsR.Add(remoteCert.Details.Name+".", remoteCert.Details.Ips[0].IP.String())
}
existing := hm.Hosts[hostinfo.vpnIp]
hm.Hosts[hostinfo.vpnIp] = hostinfo
if existing != nil {
hostinfo.next = existing
existing.prev = hostinfo
}
hm.Indexes[hostinfo.localIndexId] = hostinfo
hm.RemoteIndexes[hostinfo.remoteIndexId] = hostinfo
if hm.l.Level >= logrus.DebugLevel {
hm.l.WithField("hostMap", m{"mapName": hm.name, "vpnIp": hostinfo.vpnIp, "mapTotalSize": len(hm.Hosts),
"hostinfo": m{"existing": true, "localIndexId": hostinfo.localIndexId, "hostId": hostinfo.vpnIp}}).
Debug("Hostmap vpnIp added")
}
i := 1
check := hostinfo
for check != nil {
if i > MaxHostInfosPerVpnIp {
hm.unlockedDeleteHostInfo(check)
}
check = check.next
i++
}
}
// punchList assembles a list of all non nil RemoteList pointer entries in this hostmap
// The caller can then do the its work outside of the read lock
func (hm *HostMap) punchList(rl []*RemoteList) []*RemoteList {
hm.RLock()
defer hm.RUnlock()
for _, v := range hm.Hosts {
if v.remotes != nil {
rl = append(rl, v.remotes)
}
}
return rl
}
// Punchy iterates through the result of punchList() to assemble all known addresses and sends a hole punch packet to them
func (hm *HostMap) Punchy(ctx context.Context, conn *udp.Conn) {
var metricsTxPunchy metrics.Counter
if hm.metricsEnabled {
metricsTxPunchy = metrics.GetOrRegisterCounter("messages.tx.punchy", nil)
} else {
metricsTxPunchy = metrics.NilCounter{}
}
var remotes []*RemoteList
b := []byte{1}
clockSource := time.NewTicker(time.Second * 10)
defer clockSource.Stop()
for {
remotes = hm.punchList(remotes[:0])
for _, rl := range remotes {
//TODO: CopyAddrs generates garbage but ForEach locks for the work here, figure out which way is better
for _, addr := range rl.CopyAddrs(hm.preferredRanges) {
metricsTxPunchy.Inc(1)
conn.WriteTo(b, addr)
}
}
select {
case <-ctx.Done():
return
case <-clockSource.C:
continue
}
}
}
// TryPromoteBest handles re-querying lighthouses and probing for better paths
// NOTE: It is an error to call this if you are a lighthouse since they should not roam clients!
func (i *HostInfo) TryPromoteBest(preferredRanges []*net.IPNet, ifce *Interface) {
c := i.promoteCounter.Add(1)
if c%PromoteEvery == 0 {
// The lock here is currently protecting i.remote access
i.RLock()
remote := i.remote
i.RUnlock()
// return early if we are already on a preferred remote
if remote != nil {
rIP := remote.IP
for _, l := range preferredRanges {
if l.Contains(rIP) {
return
}
}
}
i.remotes.ForEach(preferredRanges, func(addr *udp.Addr, preferred bool) {
if remote != nil && (addr == nil || !preferred) {
return
}
// Try to send a test packet to that host, this should
// cause it to detect a roaming event and switch remotes
ifce.sendTo(header.Test, header.TestRequest, i.ConnectionState, i, addr, []byte(""), make([]byte, 12, 12), make([]byte, mtu))
})
}
// Re query our lighthouses for new remotes occasionally
if c%ReQueryEvery == 0 && ifce.lightHouse != nil {
ifce.lightHouse.QueryServer(i.vpnIp, ifce)
}
}
func (i *HostInfo) cachePacket(l *logrus.Logger, t header.MessageType, st header.MessageSubType, packet []byte, f packetCallback, m *cachedPacketMetrics) {
//TODO: return the error so we can log with more context
if len(i.packetStore) < 100 {
tempPacket := make([]byte, len(packet))
copy(tempPacket, packet)
//l.WithField("trace", string(debug.Stack())).Error("Caching packet", tempPacket)
i.packetStore = append(i.packetStore, &cachedPacket{t, st, f, tempPacket})
if l.Level >= logrus.DebugLevel {
i.logger(l).
WithField("length", len(i.packetStore)).
WithField("stored", true).
Debugf("Packet store")
}
} else if l.Level >= logrus.DebugLevel {
m.dropped.Inc(1)
i.logger(l).
WithField("length", len(i.packetStore)).
WithField("stored", false).
Debugf("Packet store")
}
}
// handshakeComplete will set the connection as ready to communicate, as well as flush any stored packets
func (i *HostInfo) handshakeComplete(l *logrus.Logger, m *cachedPacketMetrics) {
//TODO: I'm not certain the distinction between handshake complete and ConnectionState being ready matters because:
//TODO: HandshakeComplete means send stored packets and ConnectionState.ready means we are ready to send
//TODO: if the transition from HandhsakeComplete to ConnectionState.ready happens all within this function they are identical
i.ConnectionState.queueLock.Lock()
i.HandshakeComplete = true
//TODO: this should be managed by the handshake state machine to set it based on how many handshake were seen.
// Clamping it to 2 gets us out of the woods for now
i.ConnectionState.messageCounter.Store(2)
if l.Level >= logrus.DebugLevel {
i.logger(l).Debugf("Sending %d stored packets", len(i.packetStore))
}
if len(i.packetStore) > 0 {
nb := make([]byte, 12, 12)
out := make([]byte, mtu)
for _, cp := range i.packetStore {
cp.callback(cp.messageType, cp.messageSubType, i, cp.packet, nb, out)
}
m.sent.Inc(int64(len(i.packetStore)))
}
i.remotes.ResetBlockedRemotes()
i.packetStore = make([]*cachedPacket, 0)
i.ConnectionState.ready = true
i.ConnectionState.queueLock.Unlock()
i.ConnectionState.certState = nil
}
func (i *HostInfo) GetCert() *cert.NebulaCertificate {
if i.ConnectionState != nil {
return i.ConnectionState.peerCert
}
return nil
}
func (i *HostInfo) SetRemote(remote *udp.Addr) {
// We copy here because we likely got this remote from a source that reuses the object
if !i.remote.Equals(remote) {
i.remote = remote.Copy()
i.remotes.LearnRemote(i.vpnIp, remote.Copy())
}
}
// SetRemoteIfPreferred returns true if the remote was changed. The lastRoam
// time on the HostInfo will also be updated.
func (i *HostInfo) SetRemoteIfPreferred(hm *HostMap, newRemote *udp.Addr) bool {
if newRemote == nil {
// relays have nil udp Addrs
return false
}
currentRemote := i.remote
if currentRemote == nil {
i.SetRemote(newRemote)
return true
}
// NOTE: We do this loop here instead of calling `isPreferred` in
// remote_list.go so that we only have to loop over preferredRanges once.
newIsPreferred := false
for _, l := range hm.preferredRanges {
// return early if we are already on a preferred remote
if l.Contains(currentRemote.IP) {
return false
}
if l.Contains(newRemote.IP) {
newIsPreferred = true
}
}
if newIsPreferred {
// Consider this a roaming event
i.lastRoam = time.Now()
i.lastRoamRemote = currentRemote.Copy()
i.SetRemote(newRemote)
return true
}
return false
}
func (i *HostInfo) RecvErrorExceeded() bool {
if i.recvError < 3 {
i.recvError += 1
return false
}
return true
}
func (i *HostInfo) CreateRemoteCIDR(c *cert.NebulaCertificate) {
if len(c.Details.Ips) == 1 && len(c.Details.Subnets) == 0 {
// Simple case, no CIDRTree needed
return
}
remoteCidr := cidr.NewTree4()
for _, ip := range c.Details.Ips {
remoteCidr.AddCIDR(&net.IPNet{IP: ip.IP, Mask: net.IPMask{255, 255, 255, 255}}, struct{}{})
}
for _, n := range c.Details.Subnets {
remoteCidr.AddCIDR(n, struct{}{})
}
i.remoteCidr = remoteCidr
}
func (i *HostInfo) logger(l *logrus.Logger) *logrus.Entry {
if i == nil {
return logrus.NewEntry(l)
}
li := l.WithField("vpnIp", i.vpnIp).
WithField("localIndex", i.localIndexId).
WithField("remoteIndex", i.remoteIndexId)
if connState := i.ConnectionState; connState != nil {
if peerCert := connState.peerCert; peerCert != nil {
li = li.WithField("certName", peerCert.Details.Name)
}
}
return li
}
// Utility functions
func localIps(l *logrus.Logger, allowList *LocalAllowList) *[]net.IP {
//FIXME: This function is pretty garbage
var ips []net.IP
ifaces, _ := net.Interfaces()
for _, i := range ifaces {
allow := allowList.AllowName(i.Name)
if l.Level >= logrus.TraceLevel {
l.WithField("interfaceName", i.Name).WithField("allow", allow).Trace("localAllowList.AllowName")
}
if !allow {
continue
}
addrs, _ := i.Addrs()
for _, addr := range addrs {
var ip net.IP
switch v := addr.(type) {
case *net.IPNet:
//continue
ip = v.IP
case *net.IPAddr:
ip = v.IP
}
//TODO: Filtering out link local for now, this is probably the most correct thing
//TODO: Would be nice to filter out SLAAC MAC based ips as well
if ip.IsLoopback() == false && !ip.IsLinkLocalUnicast() {
allow := allowList.Allow(ip)
if l.Level >= logrus.TraceLevel {
l.WithField("localIp", ip).WithField("allow", allow).Trace("localAllowList.Allow")
}
if !allow {
continue
}
ips = append(ips, ip)
}
}
}
return &ips
}