nebula/cert/cert.go

1030 lines
30 KiB
Go

package cert
import (
"bytes"
"crypto/ecdh"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/elliptic"
"crypto/rand"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"encoding/json"
"encoding/pem"
"errors"
"fmt"
"math"
"math/big"
"net"
"sync/atomic"
"time"
"golang.org/x/crypto/curve25519"
"google.golang.org/protobuf/proto"
)
const publicKeyLen = 32
const (
CertBanner = "NEBULA CERTIFICATE"
X25519PrivateKeyBanner = "NEBULA X25519 PRIVATE KEY"
X25519PublicKeyBanner = "NEBULA X25519 PUBLIC KEY"
EncryptedEd25519PrivateKeyBanner = "NEBULA ED25519 ENCRYPTED PRIVATE KEY"
Ed25519PrivateKeyBanner = "NEBULA ED25519 PRIVATE KEY"
Ed25519PublicKeyBanner = "NEBULA ED25519 PUBLIC KEY"
P256PrivateKeyBanner = "NEBULA P256 PRIVATE KEY"
P256PublicKeyBanner = "NEBULA P256 PUBLIC KEY"
EncryptedECDSAP256PrivateKeyBanner = "NEBULA ECDSA P256 ENCRYPTED PRIVATE KEY"
ECDSAP256PrivateKeyBanner = "NEBULA ECDSA P256 PRIVATE KEY"
)
type NebulaCertificate struct {
Details NebulaCertificateDetails
Signature []byte
// the cached hex string of the calculated sha256sum
// for VerifyWithCache
sha256sum atomic.Pointer[string]
// the cached public key bytes if they were verified as the signer
// for VerifyWithCache
signatureVerified atomic.Pointer[[]byte]
}
type NebulaCertificateDetails struct {
Name string
Ips []*net.IPNet
Subnets []*net.IPNet
Groups []string
NotBefore time.Time
NotAfter time.Time
PublicKey []byte
IsCA bool
Issuer string
// Map of groups for faster lookup
InvertedGroups map[string]struct{}
Curve Curve
}
type NebulaEncryptedData struct {
EncryptionMetadata NebulaEncryptionMetadata
Ciphertext []byte
}
type NebulaEncryptionMetadata struct {
EncryptionAlgorithm string
Argon2Parameters Argon2Parameters
}
type m map[string]interface{}
// Returned if we try to unmarshal an encrypted private key without a passphrase
var ErrPrivateKeyEncrypted = errors.New("private key must be decrypted")
// UnmarshalNebulaCertificate will unmarshal a protobuf byte representation of a nebula cert
func UnmarshalNebulaCertificate(b []byte) (*NebulaCertificate, error) {
if len(b) == 0 {
return nil, fmt.Errorf("nil byte array")
}
var rc RawNebulaCertificate
err := proto.Unmarshal(b, &rc)
if err != nil {
return nil, err
}
if rc.Details == nil {
return nil, fmt.Errorf("encoded Details was nil")
}
if len(rc.Details.Ips)%2 != 0 {
return nil, fmt.Errorf("encoded IPs should be in pairs, an odd number was found")
}
if len(rc.Details.Subnets)%2 != 0 {
return nil, fmt.Errorf("encoded Subnets should be in pairs, an odd number was found")
}
nc := NebulaCertificate{
Details: NebulaCertificateDetails{
Name: rc.Details.Name,
Groups: make([]string, len(rc.Details.Groups)),
Ips: make([]*net.IPNet, len(rc.Details.Ips)/2),
Subnets: make([]*net.IPNet, len(rc.Details.Subnets)/2),
NotBefore: time.Unix(rc.Details.NotBefore, 0),
NotAfter: time.Unix(rc.Details.NotAfter, 0),
PublicKey: make([]byte, len(rc.Details.PublicKey)),
IsCA: rc.Details.IsCA,
InvertedGroups: make(map[string]struct{}),
Curve: rc.Details.Curve,
},
Signature: make([]byte, len(rc.Signature)),
}
copy(nc.Signature, rc.Signature)
copy(nc.Details.Groups, rc.Details.Groups)
nc.Details.Issuer = hex.EncodeToString(rc.Details.Issuer)
if len(rc.Details.PublicKey) < publicKeyLen {
return nil, fmt.Errorf("Public key was fewer than 32 bytes; %v", len(rc.Details.PublicKey))
}
copy(nc.Details.PublicKey, rc.Details.PublicKey)
for i, rawIp := range rc.Details.Ips {
if i%2 == 0 {
nc.Details.Ips[i/2] = &net.IPNet{IP: int2ip(rawIp)}
} else {
nc.Details.Ips[i/2].Mask = net.IPMask(int2ip(rawIp))
}
}
for i, rawIp := range rc.Details.Subnets {
if i%2 == 0 {
nc.Details.Subnets[i/2] = &net.IPNet{IP: int2ip(rawIp)}
} else {
nc.Details.Subnets[i/2].Mask = net.IPMask(int2ip(rawIp))
}
}
for _, g := range rc.Details.Groups {
nc.Details.InvertedGroups[g] = struct{}{}
}
return &nc, nil
}
// UnmarshalNebulaCertificateFromPEM will unmarshal the first pem block in a byte array, returning any non consumed data
// or an error on failure
func UnmarshalNebulaCertificateFromPEM(b []byte) (*NebulaCertificate, []byte, error) {
p, r := pem.Decode(b)
if p == nil {
return nil, r, fmt.Errorf("input did not contain a valid PEM encoded block")
}
if p.Type != CertBanner {
return nil, r, fmt.Errorf("bytes did not contain a proper nebula certificate banner")
}
nc, err := UnmarshalNebulaCertificate(p.Bytes)
return nc, r, err
}
func MarshalPrivateKey(curve Curve, b []byte) []byte {
switch curve {
case Curve_CURVE25519:
return pem.EncodeToMemory(&pem.Block{Type: X25519PrivateKeyBanner, Bytes: b})
case Curve_P256:
return pem.EncodeToMemory(&pem.Block{Type: P256PrivateKeyBanner, Bytes: b})
default:
return nil
}
}
func MarshalSigningPrivateKey(curve Curve, b []byte) []byte {
switch curve {
case Curve_CURVE25519:
return pem.EncodeToMemory(&pem.Block{Type: Ed25519PrivateKeyBanner, Bytes: b})
case Curve_P256:
return pem.EncodeToMemory(&pem.Block{Type: ECDSAP256PrivateKeyBanner, Bytes: b})
default:
return nil
}
}
// MarshalX25519PrivateKey is a simple helper to PEM encode an X25519 private key
func MarshalX25519PrivateKey(b []byte) []byte {
return pem.EncodeToMemory(&pem.Block{Type: X25519PrivateKeyBanner, Bytes: b})
}
// MarshalEd25519PrivateKey is a simple helper to PEM encode an Ed25519 private key
func MarshalEd25519PrivateKey(key ed25519.PrivateKey) []byte {
return pem.EncodeToMemory(&pem.Block{Type: Ed25519PrivateKeyBanner, Bytes: key})
}
func UnmarshalPrivateKey(b []byte) ([]byte, []byte, Curve, error) {
k, r := pem.Decode(b)
if k == nil {
return nil, r, 0, fmt.Errorf("input did not contain a valid PEM encoded block")
}
var expectedLen int
var curve Curve
switch k.Type {
case X25519PrivateKeyBanner:
expectedLen = 32
curve = Curve_CURVE25519
case P256PrivateKeyBanner:
expectedLen = 32
curve = Curve_P256
default:
return nil, r, 0, fmt.Errorf("bytes did not contain a proper nebula private key banner")
}
if len(k.Bytes) != expectedLen {
return nil, r, 0, fmt.Errorf("key was not %d bytes, is invalid %s private key", expectedLen, curve)
}
return k.Bytes, r, curve, nil
}
func UnmarshalSigningPrivateKey(b []byte) ([]byte, []byte, Curve, error) {
k, r := pem.Decode(b)
if k == nil {
return nil, r, 0, fmt.Errorf("input did not contain a valid PEM encoded block")
}
var curve Curve
switch k.Type {
case EncryptedEd25519PrivateKeyBanner:
return nil, nil, Curve_CURVE25519, ErrPrivateKeyEncrypted
case EncryptedECDSAP256PrivateKeyBanner:
return nil, nil, Curve_P256, ErrPrivateKeyEncrypted
case Ed25519PrivateKeyBanner:
curve = Curve_CURVE25519
if len(k.Bytes) != ed25519.PrivateKeySize {
return nil, r, 0, fmt.Errorf("key was not %d bytes, is invalid Ed25519 private key", ed25519.PrivateKeySize)
}
case ECDSAP256PrivateKeyBanner:
curve = Curve_P256
if len(k.Bytes) != 32 {
return nil, r, 0, fmt.Errorf("key was not 32 bytes, is invalid ECDSA P256 private key")
}
default:
return nil, r, 0, fmt.Errorf("bytes did not contain a proper nebula Ed25519/ECDSA private key banner")
}
return k.Bytes, r, curve, nil
}
// EncryptAndMarshalSigningPrivateKey is a simple helper to encrypt and PEM encode a private key
func EncryptAndMarshalSigningPrivateKey(curve Curve, b []byte, passphrase []byte, kdfParams *Argon2Parameters) ([]byte, error) {
ciphertext, err := aes256Encrypt(passphrase, kdfParams, b)
if err != nil {
return nil, err
}
b, err = proto.Marshal(&RawNebulaEncryptedData{
EncryptionMetadata: &RawNebulaEncryptionMetadata{
EncryptionAlgorithm: "AES-256-GCM",
Argon2Parameters: &RawNebulaArgon2Parameters{
Version: kdfParams.version,
Memory: kdfParams.Memory,
Parallelism: uint32(kdfParams.Parallelism),
Iterations: kdfParams.Iterations,
Salt: kdfParams.salt,
},
},
Ciphertext: ciphertext,
})
if err != nil {
return nil, err
}
switch curve {
case Curve_CURVE25519:
return pem.EncodeToMemory(&pem.Block{Type: EncryptedEd25519PrivateKeyBanner, Bytes: b}), nil
case Curve_P256:
return pem.EncodeToMemory(&pem.Block{Type: EncryptedECDSAP256PrivateKeyBanner, Bytes: b}), nil
default:
return nil, fmt.Errorf("invalid curve: %v", curve)
}
}
// UnmarshalX25519PrivateKey will try to pem decode an X25519 private key, returning any other bytes b
// or an error on failure
func UnmarshalX25519PrivateKey(b []byte) ([]byte, []byte, error) {
k, r := pem.Decode(b)
if k == nil {
return nil, r, fmt.Errorf("input did not contain a valid PEM encoded block")
}
if k.Type != X25519PrivateKeyBanner {
return nil, r, fmt.Errorf("bytes did not contain a proper nebula X25519 private key banner")
}
if len(k.Bytes) != publicKeyLen {
return nil, r, fmt.Errorf("key was not 32 bytes, is invalid X25519 private key")
}
return k.Bytes, r, nil
}
// UnmarshalEd25519PrivateKey will try to pem decode an Ed25519 private key, returning any other bytes b
// or an error on failure
func UnmarshalEd25519PrivateKey(b []byte) (ed25519.PrivateKey, []byte, error) {
k, r := pem.Decode(b)
if k == nil {
return nil, r, fmt.Errorf("input did not contain a valid PEM encoded block")
}
if k.Type == EncryptedEd25519PrivateKeyBanner {
return nil, r, ErrPrivateKeyEncrypted
} else if k.Type != Ed25519PrivateKeyBanner {
return nil, r, fmt.Errorf("bytes did not contain a proper nebula Ed25519 private key banner")
}
if len(k.Bytes) != ed25519.PrivateKeySize {
return nil, r, fmt.Errorf("key was not 64 bytes, is invalid ed25519 private key")
}
return k.Bytes, r, nil
}
// UnmarshalNebulaCertificate will unmarshal a protobuf byte representation of a nebula cert into its
// protobuf-generated struct.
func UnmarshalNebulaEncryptedData(b []byte) (*NebulaEncryptedData, error) {
if len(b) == 0 {
return nil, fmt.Errorf("nil byte array")
}
var rned RawNebulaEncryptedData
err := proto.Unmarshal(b, &rned)
if err != nil {
return nil, err
}
if rned.EncryptionMetadata == nil {
return nil, fmt.Errorf("encoded EncryptionMetadata was nil")
}
if rned.EncryptionMetadata.Argon2Parameters == nil {
return nil, fmt.Errorf("encoded Argon2Parameters was nil")
}
params, err := unmarshalArgon2Parameters(rned.EncryptionMetadata.Argon2Parameters)
if err != nil {
return nil, err
}
ned := NebulaEncryptedData{
EncryptionMetadata: NebulaEncryptionMetadata{
EncryptionAlgorithm: rned.EncryptionMetadata.EncryptionAlgorithm,
Argon2Parameters: *params,
},
Ciphertext: rned.Ciphertext,
}
return &ned, nil
}
func unmarshalArgon2Parameters(params *RawNebulaArgon2Parameters) (*Argon2Parameters, error) {
if params.Version < math.MinInt32 || params.Version > math.MaxInt32 {
return nil, fmt.Errorf("Argon2Parameters Version must be at least %d and no more than %d", math.MinInt32, math.MaxInt32)
}
if params.Memory <= 0 || params.Memory > math.MaxUint32 {
return nil, fmt.Errorf("Argon2Parameters Memory must be be greater than 0 and no more than %d KiB", uint32(math.MaxUint32))
}
if params.Parallelism <= 0 || params.Parallelism > math.MaxUint8 {
return nil, fmt.Errorf("Argon2Parameters Parallelism must be be greater than 0 and no more than %d", math.MaxUint8)
}
if params.Iterations <= 0 || params.Iterations > math.MaxUint32 {
return nil, fmt.Errorf("-argon-iterations must be be greater than 0 and no more than %d", uint32(math.MaxUint32))
}
return &Argon2Parameters{
version: rune(params.Version),
Memory: uint32(params.Memory),
Parallelism: uint8(params.Parallelism),
Iterations: uint32(params.Iterations),
salt: params.Salt,
}, nil
}
// DecryptAndUnmarshalSigningPrivateKey will try to pem decode and decrypt an Ed25519/ECDSA private key with
// the given passphrase, returning any other bytes b or an error on failure
func DecryptAndUnmarshalSigningPrivateKey(passphrase, b []byte) (Curve, []byte, []byte, error) {
var curve Curve
k, r := pem.Decode(b)
if k == nil {
return curve, nil, r, fmt.Errorf("input did not contain a valid PEM encoded block")
}
switch k.Type {
case EncryptedEd25519PrivateKeyBanner:
curve = Curve_CURVE25519
case EncryptedECDSAP256PrivateKeyBanner:
curve = Curve_P256
default:
return curve, nil, r, fmt.Errorf("bytes did not contain a proper nebula encrypted Ed25519/ECDSA private key banner")
}
ned, err := UnmarshalNebulaEncryptedData(k.Bytes)
if err != nil {
return curve, nil, r, err
}
var bytes []byte
switch ned.EncryptionMetadata.EncryptionAlgorithm {
case "AES-256-GCM":
bytes, err = aes256Decrypt(passphrase, &ned.EncryptionMetadata.Argon2Parameters, ned.Ciphertext)
if err != nil {
return curve, nil, r, err
}
default:
return curve, nil, r, fmt.Errorf("unsupported encryption algorithm: %s", ned.EncryptionMetadata.EncryptionAlgorithm)
}
switch curve {
case Curve_CURVE25519:
if len(bytes) != ed25519.PrivateKeySize {
return curve, nil, r, fmt.Errorf("key was not %d bytes, is invalid ed25519 private key", ed25519.PrivateKeySize)
}
case Curve_P256:
if len(bytes) != 32 {
return curve, nil, r, fmt.Errorf("key was not 32 bytes, is invalid ECDSA P256 private key")
}
}
return curve, bytes, r, nil
}
func MarshalPublicKey(curve Curve, b []byte) []byte {
switch curve {
case Curve_CURVE25519:
return pem.EncodeToMemory(&pem.Block{Type: X25519PublicKeyBanner, Bytes: b})
case Curve_P256:
return pem.EncodeToMemory(&pem.Block{Type: P256PublicKeyBanner, Bytes: b})
default:
return nil
}
}
// MarshalX25519PublicKey is a simple helper to PEM encode an X25519 public key
func MarshalX25519PublicKey(b []byte) []byte {
return pem.EncodeToMemory(&pem.Block{Type: X25519PublicKeyBanner, Bytes: b})
}
// MarshalEd25519PublicKey is a simple helper to PEM encode an Ed25519 public key
func MarshalEd25519PublicKey(key ed25519.PublicKey) []byte {
return pem.EncodeToMemory(&pem.Block{Type: Ed25519PublicKeyBanner, Bytes: key})
}
func UnmarshalPublicKey(b []byte) ([]byte, []byte, Curve, error) {
k, r := pem.Decode(b)
if k == nil {
return nil, r, 0, fmt.Errorf("input did not contain a valid PEM encoded block")
}
var expectedLen int
var curve Curve
switch k.Type {
case X25519PublicKeyBanner:
expectedLen = 32
curve = Curve_CURVE25519
case P256PublicKeyBanner:
// Uncompressed
expectedLen = 65
curve = Curve_P256
default:
return nil, r, 0, fmt.Errorf("bytes did not contain a proper nebula public key banner")
}
if len(k.Bytes) != expectedLen {
return nil, r, 0, fmt.Errorf("key was not %d bytes, is invalid %s public key", expectedLen, curve)
}
return k.Bytes, r, curve, nil
}
// UnmarshalX25519PublicKey will try to pem decode an X25519 public key, returning any other bytes b
// or an error on failure
func UnmarshalX25519PublicKey(b []byte) ([]byte, []byte, error) {
k, r := pem.Decode(b)
if k == nil {
return nil, r, fmt.Errorf("input did not contain a valid PEM encoded block")
}
if k.Type != X25519PublicKeyBanner {
return nil, r, fmt.Errorf("bytes did not contain a proper nebula X25519 public key banner")
}
if len(k.Bytes) != publicKeyLen {
return nil, r, fmt.Errorf("key was not 32 bytes, is invalid X25519 public key")
}
return k.Bytes, r, nil
}
// UnmarshalEd25519PublicKey will try to pem decode an Ed25519 public key, returning any other bytes b
// or an error on failure
func UnmarshalEd25519PublicKey(b []byte) (ed25519.PublicKey, []byte, error) {
k, r := pem.Decode(b)
if k == nil {
return nil, r, fmt.Errorf("input did not contain a valid PEM encoded block")
}
if k.Type != Ed25519PublicKeyBanner {
return nil, r, fmt.Errorf("bytes did not contain a proper nebula Ed25519 public key banner")
}
if len(k.Bytes) != ed25519.PublicKeySize {
return nil, r, fmt.Errorf("key was not 32 bytes, is invalid ed25519 public key")
}
return k.Bytes, r, nil
}
// Sign signs a nebula cert with the provided private key
func (nc *NebulaCertificate) Sign(curve Curve, key []byte) error {
if curve != nc.Details.Curve {
return fmt.Errorf("curve in cert and private key supplied don't match")
}
b, err := proto.Marshal(nc.getRawDetails())
if err != nil {
return err
}
var sig []byte
switch curve {
case Curve_CURVE25519:
signer := ed25519.PrivateKey(key)
sig = ed25519.Sign(signer, b)
case Curve_P256:
signer := &ecdsa.PrivateKey{
PublicKey: ecdsa.PublicKey{
Curve: elliptic.P256(),
},
// ref: https://github.com/golang/go/blob/go1.19/src/crypto/x509/sec1.go#L95
D: new(big.Int).SetBytes(key),
}
// ref: https://github.com/golang/go/blob/go1.19/src/crypto/x509/sec1.go#L119
signer.X, signer.Y = signer.Curve.ScalarBaseMult(key)
// We need to hash first for ECDSA
// - https://pkg.go.dev/crypto/ecdsa#SignASN1
hashed := sha256.Sum256(b)
sig, err = ecdsa.SignASN1(rand.Reader, signer, hashed[:])
if err != nil {
return err
}
default:
return fmt.Errorf("invalid curve: %s", nc.Details.Curve)
}
nc.Signature = sig
return nil
}
// CheckSignature verifies the signature against the provided public key
func (nc *NebulaCertificate) CheckSignature(key []byte) bool {
b, err := proto.Marshal(nc.getRawDetails())
if err != nil {
return false
}
switch nc.Details.Curve {
case Curve_CURVE25519:
return ed25519.Verify(ed25519.PublicKey(key), b, nc.Signature)
case Curve_P256:
x, y := elliptic.Unmarshal(elliptic.P256(), key)
pubKey := &ecdsa.PublicKey{Curve: elliptic.P256(), X: x, Y: y}
hashed := sha256.Sum256(b)
return ecdsa.VerifyASN1(pubKey, hashed[:], nc.Signature)
default:
return false
}
}
// NOTE: This uses an internal cache that will not be invalidated automatically
// if you manually change any fields in the NebulaCertificate.
func (nc *NebulaCertificate) checkSignatureWithCache(key []byte, useCache bool) bool {
if !useCache {
return nc.CheckSignature(key)
}
if v := nc.signatureVerified.Load(); v != nil {
return bytes.Equal(*v, key)
}
verified := nc.CheckSignature(key)
if verified {
keyCopy := make([]byte, len(key))
copy(keyCopy, key)
nc.signatureVerified.Store(&keyCopy)
}
return verified
}
// Expired will return true if the nebula cert is too young or too old compared to the provided time, otherwise false
func (nc *NebulaCertificate) Expired(t time.Time) bool {
return nc.Details.NotBefore.After(t) || nc.Details.NotAfter.Before(t)
}
// Verify will ensure a certificate is good in all respects (expiry, group membership, signature, cert blocklist, etc)
func (nc *NebulaCertificate) Verify(t time.Time, ncp *NebulaCAPool) (bool, error) {
return nc.verify(t, ncp, false)
}
// VerifyWithCache will ensure a certificate is good in all respects (expiry, group membership, signature, cert blocklist, etc)
//
// NOTE: This uses an internal cache that will not be invalidated automatically
// if you manually change any fields in the NebulaCertificate.
func (nc *NebulaCertificate) VerifyWithCache(t time.Time, ncp *NebulaCAPool) (bool, error) {
return nc.verify(t, ncp, true)
}
// ResetCache resets the cache used by VerifyWithCache.
func (nc *NebulaCertificate) ResetCache() {
nc.sha256sum.Store(nil)
nc.signatureVerified.Store(nil)
}
// Verify will ensure a certificate is good in all respects (expiry, group membership, signature, cert blocklist, etc)
func (nc *NebulaCertificate) verify(t time.Time, ncp *NebulaCAPool, useCache bool) (bool, error) {
if ncp.isBlocklistedWithCache(nc, useCache) {
return false, ErrBlockListed
}
signer, err := ncp.GetCAForCert(nc)
if err != nil {
return false, err
}
if signer.Expired(t) {
return false, ErrRootExpired
}
if nc.Expired(t) {
return false, ErrExpired
}
if !nc.checkSignatureWithCache(signer.Details.PublicKey, useCache) {
return false, ErrSignatureMismatch
}
if err := nc.CheckRootConstrains(signer); err != nil {
return false, err
}
return true, nil
}
// CheckRootConstrains returns an error if the certificate violates constraints set on the root (groups, ips, subnets)
func (nc *NebulaCertificate) CheckRootConstrains(signer *NebulaCertificate) error {
// Make sure this cert wasn't valid before the root
if signer.Details.NotAfter.Before(nc.Details.NotAfter) {
return fmt.Errorf("certificate expires after signing certificate")
}
// Make sure this cert isn't valid after the root
if signer.Details.NotBefore.After(nc.Details.NotBefore) {
return fmt.Errorf("certificate is valid before the signing certificate")
}
// If the signer has a limited set of groups make sure the cert only contains a subset
if len(signer.Details.InvertedGroups) > 0 {
for _, g := range nc.Details.Groups {
if _, ok := signer.Details.InvertedGroups[g]; !ok {
return fmt.Errorf("certificate contained a group not present on the signing ca: %s", g)
}
}
}
// If the signer has a limited set of ip ranges to issue from make sure the cert only contains a subset
if len(signer.Details.Ips) > 0 {
for _, ip := range nc.Details.Ips {
if !netMatch(ip, signer.Details.Ips) {
return fmt.Errorf("certificate contained an ip assignment outside the limitations of the signing ca: %s", ip.String())
}
}
}
// If the signer has a limited set of subnet ranges to issue from make sure the cert only contains a subset
if len(signer.Details.Subnets) > 0 {
for _, subnet := range nc.Details.Subnets {
if !netMatch(subnet, signer.Details.Subnets) {
return fmt.Errorf("certificate contained a subnet assignment outside the limitations of the signing ca: %s", subnet)
}
}
}
return nil
}
// VerifyPrivateKey checks that the public key in the Nebula certificate and a supplied private key match
func (nc *NebulaCertificate) VerifyPrivateKey(curve Curve, key []byte) error {
if curve != nc.Details.Curve {
return fmt.Errorf("curve in cert and private key supplied don't match")
}
if nc.Details.IsCA {
switch curve {
case Curve_CURVE25519:
// the call to PublicKey below will panic slice bounds out of range otherwise
if len(key) != ed25519.PrivateKeySize {
return fmt.Errorf("key was not 64 bytes, is invalid ed25519 private key")
}
if !ed25519.PublicKey(nc.Details.PublicKey).Equal(ed25519.PrivateKey(key).Public()) {
return fmt.Errorf("public key in cert and private key supplied don't match")
}
case Curve_P256:
privkey, err := ecdh.P256().NewPrivateKey(key)
if err != nil {
return fmt.Errorf("cannot parse private key as P256")
}
pub := privkey.PublicKey().Bytes()
if !bytes.Equal(pub, nc.Details.PublicKey) {
return fmt.Errorf("public key in cert and private key supplied don't match")
}
default:
return fmt.Errorf("invalid curve: %s", curve)
}
return nil
}
var pub []byte
switch curve {
case Curve_CURVE25519:
var err error
pub, err = curve25519.X25519(key, curve25519.Basepoint)
if err != nil {
return err
}
case Curve_P256:
privkey, err := ecdh.P256().NewPrivateKey(key)
if err != nil {
return err
}
pub = privkey.PublicKey().Bytes()
default:
return fmt.Errorf("invalid curve: %s", curve)
}
if !bytes.Equal(pub, nc.Details.PublicKey) {
return fmt.Errorf("public key in cert and private key supplied don't match")
}
return nil
}
// String will return a pretty printed representation of a nebula cert
func (nc *NebulaCertificate) String() string {
if nc == nil {
return "NebulaCertificate {}\n"
}
s := "NebulaCertificate {\n"
s += "\tDetails {\n"
s += fmt.Sprintf("\t\tName: %v\n", nc.Details.Name)
if len(nc.Details.Ips) > 0 {
s += "\t\tIps: [\n"
for _, ip := range nc.Details.Ips {
s += fmt.Sprintf("\t\t\t%v\n", ip.String())
}
s += "\t\t]\n"
} else {
s += "\t\tIps: []\n"
}
if len(nc.Details.Subnets) > 0 {
s += "\t\tSubnets: [\n"
for _, ip := range nc.Details.Subnets {
s += fmt.Sprintf("\t\t\t%v\n", ip.String())
}
s += "\t\t]\n"
} else {
s += "\t\tSubnets: []\n"
}
if len(nc.Details.Groups) > 0 {
s += "\t\tGroups: [\n"
for _, g := range nc.Details.Groups {
s += fmt.Sprintf("\t\t\t\"%v\"\n", g)
}
s += "\t\t]\n"
} else {
s += "\t\tGroups: []\n"
}
s += fmt.Sprintf("\t\tNot before: %v\n", nc.Details.NotBefore)
s += fmt.Sprintf("\t\tNot After: %v\n", nc.Details.NotAfter)
s += fmt.Sprintf("\t\tIs CA: %v\n", nc.Details.IsCA)
s += fmt.Sprintf("\t\tIssuer: %s\n", nc.Details.Issuer)
s += fmt.Sprintf("\t\tPublic key: %x\n", nc.Details.PublicKey)
s += fmt.Sprintf("\t\tCurve: %s\n", nc.Details.Curve)
s += "\t}\n"
fp, err := nc.Sha256Sum()
if err == nil {
s += fmt.Sprintf("\tFingerprint: %s\n", fp)
}
s += fmt.Sprintf("\tSignature: %x\n", nc.Signature)
s += "}"
return s
}
// getRawDetails marshals the raw details into protobuf ready struct
func (nc *NebulaCertificate) getRawDetails() *RawNebulaCertificateDetails {
rd := &RawNebulaCertificateDetails{
Name: nc.Details.Name,
Groups: nc.Details.Groups,
NotBefore: nc.Details.NotBefore.Unix(),
NotAfter: nc.Details.NotAfter.Unix(),
PublicKey: make([]byte, len(nc.Details.PublicKey)),
IsCA: nc.Details.IsCA,
Curve: nc.Details.Curve,
}
for _, ipNet := range nc.Details.Ips {
rd.Ips = append(rd.Ips, ip2int(ipNet.IP), ip2int(ipNet.Mask))
}
for _, ipNet := range nc.Details.Subnets {
rd.Subnets = append(rd.Subnets, ip2int(ipNet.IP), ip2int(ipNet.Mask))
}
copy(rd.PublicKey, nc.Details.PublicKey[:])
// I know, this is terrible
rd.Issuer, _ = hex.DecodeString(nc.Details.Issuer)
return rd
}
// Marshal will marshal a nebula cert into a protobuf byte array
func (nc *NebulaCertificate) Marshal() ([]byte, error) {
rc := RawNebulaCertificate{
Details: nc.getRawDetails(),
Signature: nc.Signature,
}
return proto.Marshal(&rc)
}
// MarshalToPEM will marshal a nebula cert into a protobuf byte array and pem encode the result
func (nc *NebulaCertificate) MarshalToPEM() ([]byte, error) {
b, err := nc.Marshal()
if err != nil {
return nil, err
}
return pem.EncodeToMemory(&pem.Block{Type: CertBanner, Bytes: b}), nil
}
// Sha256Sum calculates a sha-256 sum of the marshaled certificate
func (nc *NebulaCertificate) Sha256Sum() (string, error) {
b, err := nc.Marshal()
if err != nil {
return "", err
}
sum := sha256.Sum256(b)
return hex.EncodeToString(sum[:]), nil
}
// NOTE: This uses an internal cache that will not be invalidated automatically
// if you manually change any fields in the NebulaCertificate.
func (nc *NebulaCertificate) sha256SumWithCache(useCache bool) (string, error) {
if !useCache {
return nc.Sha256Sum()
}
if s := nc.sha256sum.Load(); s != nil {
return *s, nil
}
s, err := nc.Sha256Sum()
if err != nil {
return s, err
}
nc.sha256sum.Store(&s)
return s, nil
}
func (nc *NebulaCertificate) MarshalJSON() ([]byte, error) {
toString := func(ips []*net.IPNet) []string {
s := []string{}
for _, ip := range ips {
s = append(s, ip.String())
}
return s
}
fp, _ := nc.Sha256Sum()
jc := m{
"details": m{
"name": nc.Details.Name,
"ips": toString(nc.Details.Ips),
"subnets": toString(nc.Details.Subnets),
"groups": nc.Details.Groups,
"notBefore": nc.Details.NotBefore,
"notAfter": nc.Details.NotAfter,
"publicKey": fmt.Sprintf("%x", nc.Details.PublicKey),
"isCa": nc.Details.IsCA,
"issuer": nc.Details.Issuer,
"curve": nc.Details.Curve.String(),
},
"fingerprint": fp,
"signature": fmt.Sprintf("%x", nc.Signature),
}
return json.Marshal(jc)
}
//func (nc *NebulaCertificate) Copy() *NebulaCertificate {
// r, err := nc.Marshal()
// if err != nil {
// //TODO
// return nil
// }
//
// c, err := UnmarshalNebulaCertificate(r)
// return c
//}
func (nc *NebulaCertificate) Copy() *NebulaCertificate {
c := &NebulaCertificate{
Details: NebulaCertificateDetails{
Name: nc.Details.Name,
Groups: make([]string, len(nc.Details.Groups)),
Ips: make([]*net.IPNet, len(nc.Details.Ips)),
Subnets: make([]*net.IPNet, len(nc.Details.Subnets)),
NotBefore: nc.Details.NotBefore,
NotAfter: nc.Details.NotAfter,
PublicKey: make([]byte, len(nc.Details.PublicKey)),
IsCA: nc.Details.IsCA,
Issuer: nc.Details.Issuer,
InvertedGroups: make(map[string]struct{}, len(nc.Details.InvertedGroups)),
},
Signature: make([]byte, len(nc.Signature)),
}
copy(c.Signature, nc.Signature)
copy(c.Details.Groups, nc.Details.Groups)
copy(c.Details.PublicKey, nc.Details.PublicKey)
for i, p := range nc.Details.Ips {
c.Details.Ips[i] = &net.IPNet{
IP: make(net.IP, len(p.IP)),
Mask: make(net.IPMask, len(p.Mask)),
}
copy(c.Details.Ips[i].IP, p.IP)
copy(c.Details.Ips[i].Mask, p.Mask)
}
for i, p := range nc.Details.Subnets {
c.Details.Subnets[i] = &net.IPNet{
IP: make(net.IP, len(p.IP)),
Mask: make(net.IPMask, len(p.Mask)),
}
copy(c.Details.Subnets[i].IP, p.IP)
copy(c.Details.Subnets[i].Mask, p.Mask)
}
for g := range nc.Details.InvertedGroups {
c.Details.InvertedGroups[g] = struct{}{}
}
return c
}
func netMatch(certIp *net.IPNet, rootIps []*net.IPNet) bool {
for _, net := range rootIps {
if net.Contains(certIp.IP) && maskContains(net.Mask, certIp.Mask) {
return true
}
}
return false
}
func maskContains(caMask, certMask net.IPMask) bool {
caM := maskTo4(caMask)
cM := maskTo4(certMask)
// Make sure forcing to ipv4 didn't nuke us
if caM == nil || cM == nil {
return false
}
// Make sure the cert mask is not greater than the ca mask
for i := 0; i < len(caMask); i++ {
if caM[i] > cM[i] {
return false
}
}
return true
}
func maskTo4(ip net.IPMask) net.IPMask {
if len(ip) == net.IPv4len {
return ip
}
if len(ip) == net.IPv6len && isZeros(ip[0:10]) && ip[10] == 0xff && ip[11] == 0xff {
return ip[12:16]
}
return nil
}
func isZeros(b []byte) bool {
for i := 0; i < len(b); i++ {
if b[i] != 0 {
return false
}
}
return true
}
func ip2int(ip []byte) uint32 {
if len(ip) == 16 {
return binary.BigEndian.Uint32(ip[12:16])
}
return binary.BigEndian.Uint32(ip)
}
func int2ip(nn uint32) net.IP {
ip := make(net.IP, net.IPv4len)
binary.BigEndian.PutUint32(ip, nn)
return ip
}