feat(server): add flash attention llama (#144)
This commit is contained in:
parent
9987960062
commit
299217c95c
10
README.md
10
README.md
|
@ -51,16 +51,14 @@ to power LLMs api-inference widgets.
|
|||
- Log probabilities
|
||||
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
|
||||
|
||||
## Officially supported architectures
|
||||
## Optimized architectures
|
||||
|
||||
- [BLOOM](https://huggingface.co/bigscience/bloom)
|
||||
- [BLOOMZ](https://huggingface.co/bigscience/bloomz)
|
||||
- [MT0-XXL](https://huggingface.co/bigscience/mt0-xxl)
|
||||
- [Galactica](https://huggingface.co/facebook/galactica-120b)
|
||||
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
|
||||
- [GPT-Neox 20B](https://huggingface.co/EleutherAI/gpt-neox-20b)
|
||||
- [FLAN-T5-XXL](https://huggingface.co/google/flan-t5-xxl)
|
||||
- [FLAN-UL2](https://huggingface.co/google/flan-ul2)
|
||||
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
|
||||
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
|
||||
- [Llama](https://github.com/facebookresearch/llama)
|
||||
|
||||
Other architectures are supported on a best effort basis using:
|
||||
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
"tokens": [
|
||||
{
|
||||
"id": 259,
|
||||
"text": " ",
|
||||
"text": "",
|
||||
"logprob": -1.3656927,
|
||||
"special": false
|
||||
},
|
||||
|
|
|
@ -517,6 +517,14 @@ tensorflow = ["tensorflow"]
|
|||
testing = ["h5py", "huggingface-hub", "numpy", "pytest", "pytest-benchmark", "setuptools-rust"]
|
||||
torch = ["torch"]
|
||||
|
||||
[[package]]
|
||||
name = "sentencepiece"
|
||||
version = "0.1.97"
|
||||
description = "SentencePiece python wrapper"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
|
||||
[[package]]
|
||||
name = "setuptools"
|
||||
version = "67.4.0"
|
||||
|
@ -530,6 +538,19 @@ docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-g
|
|||
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
|
||||
testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
|
||||
|
||||
[[package]]
|
||||
name = "tokenizers"
|
||||
version = "0.13.3"
|
||||
description = "Fast and Customizable Tokenizers"
|
||||
category = "main"
|
||||
optional = false
|
||||
python-versions = "*"
|
||||
|
||||
[package.extras]
|
||||
dev = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
|
||||
docs = ["setuptools-rust", "sphinx", "sphinx-rtd-theme"]
|
||||
testing = ["black (==22.3)", "datasets", "numpy", "pytest", "requests"]
|
||||
|
||||
[[package]]
|
||||
name = "tomli"
|
||||
version = "2.0.1"
|
||||
|
@ -630,7 +651,7 @@ bnb = ["bitsandbytes"]
|
|||
[metadata]
|
||||
lock-version = "1.1"
|
||||
python-versions = "^3.9"
|
||||
content-hash = "521dc9f3c283dc56f7d2e2f96759919ff27ab49ffd3ae7cd26317b209e7fa98d"
|
||||
content-hash = "1c57379c7b9349d2a860b50b3ab125737a0f6f94f4303d7cb55248cb86ff8b8e"
|
||||
|
||||
[metadata.files]
|
||||
accelerate = [
|
||||
|
@ -1116,10 +1137,91 @@ safetensors = [
|
|||
{file = "safetensors-0.2.8-cp39-cp39-win_amd64.whl", hash = "sha256:ba3dc236a2344b7feadc9868307f42ba5e4804c9d68a80a35aac831349b31f6f"},
|
||||
{file = "safetensors-0.2.8.tar.gz", hash = "sha256:2720b20a6a38c799dca79bd76caeeac2f7df585a9d4f7d59fa7e28eff9ccb27f"},
|
||||
]
|
||||
sentencepiece = [
|
||||
{file = "sentencepiece-0.1.97-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:6f249c8f1852893be86eae66b19d522c5fb30bbad4fe2d1b07f06fdc86e1907e"},
|
||||
{file = "sentencepiece-0.1.97-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:09e1bc53178de70c557a9ba4fece07364b4416ce3d36570726b3372b68aea135"},
|
||||
{file = "sentencepiece-0.1.97-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:667193c57fb48b238be7e3d7636cfc8da56cb5bac5559d8f0b647334e1175be8"},
|
||||
{file = "sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2780531985af79c6163f63d4f200fec8a28b70b6768d2c19f70d01568a4524e8"},
|
||||
{file = "sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:205050670c53ef9015e2a98cce3934bfbcf0aafaa14caa0c618dd5667bc217ee"},
|
||||
{file = "sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28b183dadef8e8b6b4645c1c20692d7be0a13ecc3ec1a07b3885c8905516675f"},
|
||||
{file = "sentencepiece-0.1.97-cp310-cp310-win32.whl", hash = "sha256:ee3c9dbd558d8d85bb1617087b86df6ea2b856a528669630ce6cedeb4353b823"},
|
||||
{file = "sentencepiece-0.1.97-cp310-cp310-win_amd64.whl", hash = "sha256:f7dc55379e2f7dee86537180283db2e5f8418c6825fdd2fe436c724eb5604c05"},
|
||||
{file = "sentencepiece-0.1.97-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:ba1b4154f9144c5a7528b00aff5cffaa1a896a1c6ca53ca78b6e74cd2dae5244"},
|
||||
{file = "sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac3d90aee5581e55d029d124ac11b6ae2fbae0817863b664b2f2302e966ababb"},
|
||||
{file = "sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1c27400f1ac46518a01c87cb7703650e4e48728649feb115d2e3f1102a946a42"},
|
||||
{file = "sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c6e12a166eba75994ca749aadc4a5056b91b31405f805d6de6e8914cc9741c60"},
|
||||
{file = "sentencepiece-0.1.97-cp36-cp36m-win32.whl", hash = "sha256:ed85dff5c0a9b3dd1a414c7e1119f2a19e863fc3f81da525bf7f885ebc883de0"},
|
||||
{file = "sentencepiece-0.1.97-cp36-cp36m-win_amd64.whl", hash = "sha256:91a19ab6f40ffbae6d6127119953d2c6a85e93d734953dbc8629fde0d21ace66"},
|
||||
{file = "sentencepiece-0.1.97-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:bae580e4a35a9314ff49561ac7c06574fe6afc71b821ed6bb00534e571458156"},
|
||||
{file = "sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ad7262e7530c683b186672b5dd0082f82719a50a500a8cfbc4bbd7cde5bff8c"},
|
||||
{file = "sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:620cee35279720016735a7c7103cddbd9b84fe5e2f098bd5e673834d69fee2b8"},
|
||||
{file = "sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:93b921b59914c0ec6697e8c6d5e6b44d99d1298fb1a0af56980a79ade0540c19"},
|
||||
{file = "sentencepiece-0.1.97-cp37-cp37m-win32.whl", hash = "sha256:9b9a4c44a31d5f47616e9568dcf31e029b0bfa776e0a252c0b59247881598b09"},
|
||||
{file = "sentencepiece-0.1.97-cp37-cp37m-win_amd64.whl", hash = "sha256:f31533cdacced56219e239d3459a003ece35116920dd64b2309d4ad047b77644"},
|
||||
{file = "sentencepiece-0.1.97-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:7d643c01d1cad13b9206a276bbe5bc1a468e3d7cf6a26bde7783f945277f859d"},
|
||||
{file = "sentencepiece-0.1.97-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:542f1985b1ee279a92bef7740ec0781452372028ce01e15aa88df3228b197ba3"},
|
||||
{file = "sentencepiece-0.1.97-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:93701da21fea906dd244bf88cdbe640385a89c45d3c1812b76dbadf8782cdbcd"},
|
||||
{file = "sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a51514047b964047b7fadb480d88a5e0f72c02f6ca1ba96258fbbc6e79274a94"},
|
||||
{file = "sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e3ae2e9b7a5b6f2aa64ec9240b0c185dabe597d0e787dc4344acfbaef1ffe0b2"},
|
||||
{file = "sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:923ee4af16dbae1f2ab358ed09f8a0eb89e40a8198a8b343bf54181482342721"},
|
||||
{file = "sentencepiece-0.1.97-cp38-cp38-win32.whl", hash = "sha256:fa6f2b88850b5fae3a05053658824cf9f147c8e3c3b40eb64539a976c83d8a24"},
|
||||
{file = "sentencepiece-0.1.97-cp38-cp38-win_amd64.whl", hash = "sha256:5137ff0d0b1cc574751d178650ef800ff8d90bf21eb9f71e9567d4a0548940a5"},
|
||||
{file = "sentencepiece-0.1.97-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:f92876271a10494671431ad955bff2d6f8ea59baaf957f5ae5946aff56dfcb90"},
|
||||
{file = "sentencepiece-0.1.97-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:35c227b6d55e473033db7e0ecc51b1e99e6ed7607cc08602fb5768132543c81d"},
|
||||
{file = "sentencepiece-0.1.97-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1706a8a8188f7b3d4b7922db9bb00c64c4e16ee68ab4caaae79f55b3e18748c7"},
|
||||
{file = "sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ce61efc1862ccb18856c4aabbd930e13d5bfbb4b09b4f111081ac53a9dc62275"},
|
||||
{file = "sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a78c03800ef9f02d320e0159f5768b15357f3e9ebea545c9c4ba7928ba8ba254"},
|
||||
{file = "sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753b8088fd685ee787d9f54c84275ab347de558c7c4ebc6accb4c35bf7776f20"},
|
||||
{file = "sentencepiece-0.1.97-cp39-cp39-win32.whl", hash = "sha256:24306fd86031c17a1a6ae92671e76a350390a3140a65620bc2843dad7db24e2a"},
|
||||
{file = "sentencepiece-0.1.97-cp39-cp39-win_amd64.whl", hash = "sha256:c6641d0b7acec61fde5881ea6ebe098c169557ac9aa3bdabdf124eab5a5592bb"},
|
||||
{file = "sentencepiece-0.1.97.tar.gz", hash = "sha256:c901305e0a710bbcd296f66d79e96f744e6e175b29812bd5178318437d4e1f6c"},
|
||||
]
|
||||
setuptools = [
|
||||
{file = "setuptools-67.4.0-py3-none-any.whl", hash = "sha256:f106dee1b506dee5102cc3f3e9e68137bbad6d47b616be7991714b0c62204251"},
|
||||
{file = "setuptools-67.4.0.tar.gz", hash = "sha256:e5fd0a713141a4a105412233c63dc4e17ba0090c8e8334594ac790ec97792330"},
|
||||
]
|
||||
tokenizers = [
|
||||
{file = "tokenizers-0.13.3-cp310-cp310-macosx_10_11_x86_64.whl", hash = "sha256:f3835c5be51de8c0a092058a4d4380cb9244fb34681fd0a295fbf0a52a5fdf33"},
|
||||
{file = "tokenizers-0.13.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:4ef4c3e821730f2692489e926b184321e887f34fb8a6b80b8096b966ba663d07"},
|
||||
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c5fd1a6a25353e9aa762e2aae5a1e63883cad9f4e997c447ec39d071020459bc"},
|
||||
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ee0b1b311d65beab83d7a41c56a1e46ab732a9eed4460648e8eb0bd69fc2d059"},
|
||||
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5ef4215284df1277dadbcc5e17d4882bda19f770d02348e73523f7e7d8b8d396"},
|
||||
{file = "tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4d53976079cff8a033f778fb9adca2d9d69d009c02fa2d71a878b5f3963ed30"},
|
||||
{file = "tokenizers-0.13.3-cp310-cp310-win32.whl", hash = "sha256:1f0e3b4c2ea2cd13238ce43548959c118069db7579e5d40ec270ad77da5833ce"},
|
||||
{file = "tokenizers-0.13.3-cp310-cp310-win_amd64.whl", hash = "sha256:89649c00d0d7211e8186f7a75dfa1db6996f65edce4b84821817eadcc2d3c79e"},
|
||||
{file = "tokenizers-0.13.3-cp311-cp311-macosx_10_11_universal2.whl", hash = "sha256:56b726e0d2bbc9243872b0144515ba684af5b8d8cd112fb83ee1365e26ec74c8"},
|
||||
{file = "tokenizers-0.13.3-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:cc5c022ce692e1f499d745af293ab9ee6f5d92538ed2faf73f9708c89ee59ce6"},
|
||||
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f55c981ac44ba87c93e847c333e58c12abcbb377a0c2f2ef96e1a266e4184ff2"},
|
||||
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f247eae99800ef821a91f47c5280e9e9afaeed9980fc444208d5aa6ba69ff148"},
|
||||
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4b3e3215d048e94f40f1c95802e45dcc37c5b05eb46280fc2ccc8cd351bff839"},
|
||||
{file = "tokenizers-0.13.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ba2b0bf01777c9b9bc94b53764d6684554ce98551fec496f71bc5be3a03e98b"},
|
||||
{file = "tokenizers-0.13.3-cp311-cp311-win32.whl", hash = "sha256:cc78d77f597d1c458bf0ea7c2a64b6aa06941c7a99cb135b5969b0278824d808"},
|
||||
{file = "tokenizers-0.13.3-cp311-cp311-win_amd64.whl", hash = "sha256:ecf182bf59bd541a8876deccf0360f5ae60496fd50b58510048020751cf1724c"},
|
||||
{file = "tokenizers-0.13.3-cp37-cp37m-macosx_10_11_x86_64.whl", hash = "sha256:0527dc5436a1f6bf2c0327da3145687d3bcfbeab91fed8458920093de3901b44"},
|
||||
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07cbb2c307627dc99b44b22ef05ff4473aa7c7cc1fec8f0a8b37d8a64b1a16d2"},
|
||||
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4560dbdeaae5b7ee0d4e493027e3de6d53c991b5002d7ff95083c99e11dd5ac0"},
|
||||
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:64064bd0322405c9374305ab9b4c07152a1474370327499911937fd4a76d004b"},
|
||||
{file = "tokenizers-0.13.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b8c6e2ab0f2e3d939ca66aa1d596602105fe33b505cd2854a4c1717f704c51de"},
|
||||
{file = "tokenizers-0.13.3-cp37-cp37m-win32.whl", hash = "sha256:6cc29d410768f960db8677221e497226e545eaaea01aa3613fa0fdf2cc96cff4"},
|
||||
{file = "tokenizers-0.13.3-cp37-cp37m-win_amd64.whl", hash = "sha256:fc2a7fdf864554a0dacf09d32e17c0caa9afe72baf9dd7ddedc61973bae352d8"},
|
||||
{file = "tokenizers-0.13.3-cp38-cp38-macosx_10_11_x86_64.whl", hash = "sha256:8791dedba834c1fc55e5f1521be325ea3dafb381964be20684b92fdac95d79b7"},
|
||||
{file = "tokenizers-0.13.3-cp38-cp38-macosx_12_0_arm64.whl", hash = "sha256:d607a6a13718aeb20507bdf2b96162ead5145bbbfa26788d6b833f98b31b26e1"},
|
||||
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3791338f809cd1bf8e4fee6b540b36822434d0c6c6bc47162448deee3f77d425"},
|
||||
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c2f35f30e39e6aab8716f07790f646bdc6e4a853816cc49a95ef2a9016bf9ce6"},
|
||||
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:310204dfed5aa797128b65d63538a9837cbdd15da2a29a77d67eefa489edda26"},
|
||||
{file = "tokenizers-0.13.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0f9b92ea052305166559f38498b3b0cae159caea712646648aaa272f7160963"},
|
||||
{file = "tokenizers-0.13.3-cp38-cp38-win32.whl", hash = "sha256:9a3fa134896c3c1f0da6e762d15141fbff30d094067c8f1157b9fdca593b5806"},
|
||||
{file = "tokenizers-0.13.3-cp38-cp38-win_amd64.whl", hash = "sha256:8e7b0cdeace87fa9e760e6a605e0ae8fc14b7d72e9fc19c578116f7287bb873d"},
|
||||
{file = "tokenizers-0.13.3-cp39-cp39-macosx_10_11_x86_64.whl", hash = "sha256:00cee1e0859d55507e693a48fa4aef07060c4bb6bd93d80120e18fea9371c66d"},
|
||||
{file = "tokenizers-0.13.3-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:a23ff602d0797cea1d0506ce69b27523b07e70f6dda982ab8cf82402de839088"},
|
||||
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70ce07445050b537d2696022dafb115307abdffd2a5c106f029490f84501ef97"},
|
||||
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:280ffe95f50eaaf655b3a1dc7ff1d9cf4777029dbbc3e63a74e65a056594abc3"},
|
||||
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:97acfcec592f7e9de8cadcdcda50a7134423ac8455c0166b28c9ff04d227b371"},
|
||||
{file = "tokenizers-0.13.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd7730c98a3010cd4f523465867ff95cd9d6430db46676ce79358f65ae39797b"},
|
||||
{file = "tokenizers-0.13.3-cp39-cp39-win32.whl", hash = "sha256:48625a108029cb1ddf42e17a81b5a3230ba6888a70c9dc14e81bc319e812652d"},
|
||||
{file = "tokenizers-0.13.3-cp39-cp39-win_amd64.whl", hash = "sha256:bc0a6f1ba036e482db6453571c9e3e60ecd5489980ffd95d11dc9f960483d783"},
|
||||
{file = "tokenizers-0.13.3.tar.gz", hash = "sha256:2e546dbb68b623008a5442353137fbb0123d311a6d7ba52f2667c8862a75af2e"},
|
||||
]
|
||||
tomli = [
|
||||
{file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"},
|
||||
{file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"},
|
||||
|
|
|
@ -23,6 +23,8 @@ opentelemetry-api = "^1.15.0"
|
|||
opentelemetry-exporter-otlp = "^1.15.0"
|
||||
opentelemetry-instrumentation-grpc = "^0.36b0"
|
||||
hf-transfer = "^0.1.2"
|
||||
sentencepiece = "^0.1.97"
|
||||
tokenizers = "0.13.3"
|
||||
|
||||
[tool.poetry.extras]
|
||||
bnb = ["bitsandbytes"]
|
||||
|
|
|
@ -148,7 +148,7 @@ def test_seq2seq_lm_generate_token(default_seq2seq_lm, default_seq2seq_lm_batch)
|
|||
assert all([generation.generated_text is None for generation in generations])
|
||||
assert all([len(generation.prefill_tokens) == 1 for generation in generations])
|
||||
assert all([generation.token_id.item() == 259 for generation in generations])
|
||||
assert all([generation.token_text == " " for generation in generations])
|
||||
assert all([generation.token_text == "" for generation in generations])
|
||||
assert generations[0].request_id == 0
|
||||
|
||||
|
||||
|
|
|
@ -19,13 +19,11 @@ from text_generation_server.models.t5 import T5Sharded
|
|||
try:
|
||||
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
|
||||
from text_generation_server.models.flash_santacoder import FlashSantacoder
|
||||
from text_generation_server.models.flash_llama import FlashLlama, FlashLlamaSharded
|
||||
|
||||
FLASH_ATTENTION = (
|
||||
torch.cuda.is_available() and int(os.environ.get("FLASH_ATTENTION", 0)) == 1
|
||||
)
|
||||
FLASH_ATTENTION = torch.cuda.is_available()
|
||||
except ImportError:
|
||||
if int(os.environ.get("FLASH_ATTENTION", 0)) == 1:
|
||||
logger.exception("Could not import Flash Attention models")
|
||||
logger.exception("Could not import Flash Attention enabled models")
|
||||
FLASH_ATTENTION = False
|
||||
|
||||
__all__ = [
|
||||
|
@ -47,6 +45,12 @@ if FLASH_ATTENTION:
|
|||
__all__.append(FlashNeoX)
|
||||
__all__.append(FlashNeoXSharded)
|
||||
__all__.append(FlashSantacoder)
|
||||
__all__.append(FlashLlama)
|
||||
__all__.append(FlashLlamaSharded)
|
||||
|
||||
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention CUDA kernels to be installed.\n" \
|
||||
"Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) " \
|
||||
"or install flash attention with `cd server && make install install-flash-attention`"
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
|
@ -60,7 +64,7 @@ torch.set_grad_enabled(False)
|
|||
|
||||
|
||||
def get_model(
|
||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
) -> Model:
|
||||
if "facebook/galactica" in model_id:
|
||||
if sharded:
|
||||
|
@ -92,6 +96,17 @@ def get_model(
|
|||
neox_cls = FlashNeoX if FLASH_ATTENTION else CausalLM
|
||||
return neox_cls(model_id, revision, quantize=quantize)
|
||||
|
||||
if model_type == "llama":
|
||||
if sharded:
|
||||
if FLASH_ATTENTION:
|
||||
return FlashLlamaSharded(model_id, revision, quantize=quantize)
|
||||
raise NotImplementedError(
|
||||
FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama")
|
||||
)
|
||||
else:
|
||||
llama_cls = FlashLlama if FLASH_ATTENTION else CausalLM
|
||||
return llama_cls(model_id, revision, quantize=quantize)
|
||||
|
||||
if model_type == "t5":
|
||||
if sharded:
|
||||
return T5Sharded(model_id, revision, quantize=quantize)
|
||||
|
|
|
@ -34,6 +34,8 @@ class CausalLMBatch(Batch):
|
|||
|
||||
# Lengths of all generations present in the batch
|
||||
input_lengths: List[int]
|
||||
offsets: List[Optional[int]]
|
||||
token_offsets: List[Optional[int]]
|
||||
|
||||
# Generation helpers
|
||||
next_token_choosers: List[NextTokenChooser]
|
||||
|
@ -64,12 +66,16 @@ class CausalLMBatch(Batch):
|
|||
inputs = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
padding_right_offset = 0
|
||||
for r in pb.requests:
|
||||
inputs.append(r.inputs)
|
||||
offsets.append(None)
|
||||
token_offsets.append(None)
|
||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||
stopping_criteria = StoppingCriteria.from_pb(
|
||||
r.stopping_parameters, tokenizer
|
||||
|
@ -113,6 +119,8 @@ class CausalLMBatch(Batch):
|
|||
past_key_values=None,
|
||||
all_input_ids=all_input_ids,
|
||||
input_lengths=input_lengths.tolist(),
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=pb.size,
|
||||
|
@ -135,6 +143,8 @@ class CausalLMBatch(Batch):
|
|||
# Batch attributes
|
||||
requests = []
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
all_input_ids = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
@ -151,6 +161,8 @@ class CausalLMBatch(Batch):
|
|||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
offsets.extend(batch.offsets)
|
||||
token_offsets.extend(batch.token_offsets)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
@ -264,6 +276,8 @@ class CausalLMBatch(Batch):
|
|||
past_key_values=past_key_values,
|
||||
all_input_ids=all_input_ids,
|
||||
input_lengths=input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=total_batch_size,
|
||||
|
@ -289,7 +303,7 @@ class CausalLM(Model):
|
|||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left", truncation_side="left"
|
||||
)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
|
@ -350,6 +364,8 @@ class CausalLM(Model):
|
|||
|
||||
# New values for next forward
|
||||
next_batch_input_lengths = []
|
||||
next_batch_offsets = []
|
||||
next_batch_token_offsets = []
|
||||
next_batch_input_ids = []
|
||||
next_batch_all_input_ids = []
|
||||
|
||||
|
@ -364,6 +380,8 @@ class CausalLM(Model):
|
|||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.input_lengths,
|
||||
batch.offsets,
|
||||
batch.token_offsets,
|
||||
logits,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
|
@ -374,6 +392,8 @@ class CausalLM(Model):
|
|||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
offset,
|
||||
token_offset,
|
||||
logits,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
|
@ -391,8 +411,8 @@ class CausalLM(Model):
|
|||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id]
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_text = self.decode_token(
|
||||
next_token_id_squeezed,
|
||||
next_token_text, offset, token_offset = self.decode_token(
|
||||
all_input_ids[:, 0], offset, token_offset
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
|
@ -423,6 +443,8 @@ class CausalLM(Model):
|
|||
next_batch_all_input_ids.append(all_input_ids)
|
||||
next_batch_size += 1
|
||||
next_batch_input_lengths.append(new_input_length)
|
||||
next_batch_offsets.append(offset)
|
||||
next_batch_token_offsets.append(token_offset)
|
||||
next_batch_max_input_length = max(
|
||||
next_batch_max_input_length, new_input_length
|
||||
)
|
||||
|
@ -506,6 +528,8 @@ class CausalLM(Model):
|
|||
past_key_values=next_batch_past_key_values,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
offsets=next_batch_offsets,
|
||||
token_offsets=next_batch_token_offsets,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
size=next_batch_size,
|
||||
|
|
|
@ -0,0 +1,619 @@
|
|||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
|
||||
# Flash attention imports
|
||||
import rotary_emb
|
||||
import flash_attn_cuda
|
||||
import dropout_layer_norm
|
||||
|
||||
from flash_attn.layers.rotary import RotaryEmbedding
|
||||
|
||||
|
||||
class LlamaRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
"""
|
||||
LlamaRMSNorm is equivalent to T5LayerNorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(hidden_size))
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
|
||||
return self.weight * hidden_states, residual
|
||||
else:
|
||||
# faster post attention rms norm
|
||||
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.variance_epsilon,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
True, # Activate RMSNorm
|
||||
)
|
||||
if res is None:
|
||||
res = hidden_states
|
||||
|
||||
return normed_hidden_states, res
|
||||
|
||||
|
||||
class FastLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(FastLinear, self).__init__(in_features, out_features, bias, device, dtype)
|
||||
|
||||
def transpose_weight(self):
|
||||
self.weight = nn.Parameter(self.weight.T)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if self.bias is not None:
|
||||
return torch.addmm(self.bias, input, self.weight)
|
||||
return torch.matmul(input, self.weight)
|
||||
|
||||
|
||||
class TensorParallelColumnLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
assert out_features % self.tp_world_size == 0
|
||||
out_features = out_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
|
||||
class TensorParallelRowLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
reduce=True,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
self.reduce = reduce
|
||||
assert in_features % self.tp_world_size == 0
|
||||
in_features = in_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
out = super(TensorParallelRowLinear, self).forward(input)
|
||||
if self.reduce:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TensorParallelEmbedding(nn.Embedding):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.0,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
_weight=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
|
||||
self.original_num_embeddings = num_embeddings
|
||||
|
||||
assert num_embeddings % self.tp_world_size == 0
|
||||
block_size = num_embeddings // self.tp_world_size
|
||||
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
||||
self.min_id = self.tp_rank * block_size
|
||||
self.max_id = (self.tp_rank + 1) * block_size
|
||||
|
||||
# Additional entry that will map to zero
|
||||
# Used for masking
|
||||
self.null_idx = block_size
|
||||
|
||||
super().__init__(
|
||||
block_size,
|
||||
embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=_weight,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def add_null_idx(self):
|
||||
"""Additional 0 entry used for masking"""
|
||||
self.weight = nn.Parameter(F.pad(self.weight, (0, 0, 0, 1)))
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
||||
# translate for [0, self.max_id - self.min_id[
|
||||
input = torch.where(
|
||||
(self.min_id > input) | (input >= self.max_id),
|
||||
self.null_idx,
|
||||
input - self.min_id,
|
||||
)
|
||||
out = super().forward(input)
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
return out
|
||||
|
||||
|
||||
class PositionRotaryEmbedding(RotaryEmbedding):
|
||||
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
||||
# Reset the tables if the sequence length has changed,
|
||||
# or if we're on a new device (possibly due to tracing for instance)
|
||||
if (
|
||||
seqlen > self._seq_len_cached
|
||||
or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
):
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
|
||||
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
|
||||
"""
|
||||
Return cos and sin for the asked position ids
|
||||
"""
|
||||
|
||||
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
||||
|
||||
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
||||
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
||||
return cos.unsqueeze(1), sin.unsqueeze(1)
|
||||
|
||||
def forward(self, qkv: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
||||
rotary_dim = cos.shape[-1]
|
||||
q1 = qkv[:, 0, :, :rotary_dim]
|
||||
q2 = qkv[:, 0, :, rotary_dim : 2 * rotary_dim]
|
||||
k1 = qkv[:, 1, :, :rotary_dim]
|
||||
k2 = qkv[:, 1, :, rotary_dim : 2 * rotary_dim]
|
||||
|
||||
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
||||
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
||||
return qkv
|
||||
|
||||
|
||||
class FlashLlamaAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
hidden_size,
|
||||
process_group=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.head_size = hidden_size // num_heads
|
||||
|
||||
self.rotary_emb = PositionRotaryEmbedding(self.head_size, base=10000)
|
||||
self.softmax_scale = self.head_size ** (-0.5)
|
||||
|
||||
if process_group is None:
|
||||
self.query_key_value = FastLinear(hidden_size, 3 * hidden_size, bias=False)
|
||||
self.o_proj = FastLinear(hidden_size, hidden_size, bias=False)
|
||||
else:
|
||||
self.num_heads = self.num_heads // process_group.size()
|
||||
self.query_key_value = TensorParallelColumnLinear(
|
||||
hidden_size,
|
||||
3 * hidden_size,
|
||||
bias=False,
|
||||
process_group=process_group,
|
||||
)
|
||||
self.o_proj = TensorParallelRowLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
process_group=process_group,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
|
||||
qkv_rot = self.rotary_emb(qkv, cos, sin)
|
||||
|
||||
# Prefill
|
||||
if layer_past_present_indices is None:
|
||||
# Copy to layer past
|
||||
layer_past[...] = qkv_rot[:, 1:]
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(qkv_rot[:, 0])
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
qkv_rot[:, 0],
|
||||
qkv_rot[:, 1],
|
||||
qkv_rot[:, 2],
|
||||
attn_output,
|
||||
cu_seqlens,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
True,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
query = qkv_rot[:, 0]
|
||||
# Add present to the layer_past tensor at the correct indices
|
||||
layer_past[layer_past_present_indices] = qkv_rot[:, 1:]
|
||||
|
||||
# output
|
||||
attn_output = torch.empty_like(query)
|
||||
# flash attention
|
||||
flash_attn_cuda.fwd(
|
||||
query,
|
||||
layer_past[:, 0],
|
||||
layer_past[:, 1],
|
||||
attn_output,
|
||||
cu_seqlens_q,
|
||||
cu_seqlens,
|
||||
1,
|
||||
max_s,
|
||||
0.0,
|
||||
self.softmax_scale,
|
||||
False,
|
||||
False,
|
||||
False,
|
||||
0,
|
||||
None,
|
||||
)
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
||||
|
||||
class LlamaMLP(nn.Module):
|
||||
def __init__(self, act, hidden_size, intermediate_size, process_group=None):
|
||||
super().__init__()
|
||||
self.act = (
|
||||
ACT2FN[act]
|
||||
if "gelu" not in act
|
||||
else lambda x: torch.nn.functional.gelu(
|
||||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else None,
|
||||
)
|
||||
)
|
||||
|
||||
if process_group is None:
|
||||
# Fuse gate and up proj
|
||||
self.gate_up_proj = FastLinear(
|
||||
hidden_size, 2 * intermediate_size, bias=False
|
||||
)
|
||||
self.down_proj = FastLinear(intermediate_size, hidden_size, bias=False)
|
||||
self.intermediate_size = intermediate_size
|
||||
else:
|
||||
# Fuse gate and up proj
|
||||
self.gate_up_proj = TensorParallelColumnLinear(
|
||||
hidden_size,
|
||||
2 * intermediate_size,
|
||||
bias=False,
|
||||
process_group=process_group,
|
||||
)
|
||||
self.down_proj = TensorParallelRowLinear(
|
||||
intermediate_size,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
process_group=process_group,
|
||||
reduce=True,
|
||||
)
|
||||
self.intermediate_size = self.down_proj.in_features
|
||||
|
||||
self.process_group = process_group
|
||||
|
||||
def forward(self, hidden_states):
|
||||
gate_up_states = self.gate_up_proj(hidden_states)
|
||||
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
|
||||
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
|
||||
|
||||
|
||||
class FlashLlamaLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
act,
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
rms_norm_eps,
|
||||
process_group=None,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.self_attn = FlashLlamaAttention(num_heads, hidden_size, process_group)
|
||||
self.mlp = LlamaMLP(act, hidden_size, intermediate_size, process_group)
|
||||
|
||||
self.input_layernorm = LlamaRMSNorm(hidden_size, eps=rms_norm_eps)
|
||||
self.post_attention_layernorm = LlamaRMSNorm(hidden_size, eps=rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
):
|
||||
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
# Self Attention
|
||||
attn_output = self.self_attn(
|
||||
normed_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
)
|
||||
|
||||
# faster post attention rms norm
|
||||
normed_attn_res_output, attn_res = self.post_attention_layernorm(
|
||||
attn_output, res
|
||||
)
|
||||
|
||||
mlp_output = self.mlp(normed_attn_res_output)
|
||||
|
||||
return mlp_output, attn_res
|
||||
|
||||
|
||||
class FlashLlamaModel(torch.nn.Module):
|
||||
def __init__(self, config, process_group=None):
|
||||
super(FlashLlamaModel, self).__init__()
|
||||
self.config = config
|
||||
|
||||
self.tp_embeddings = False
|
||||
if process_group is not None:
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
if config.vocab_size % self.tp_world_size == 0:
|
||||
self.tp_embeddings = True
|
||||
|
||||
if self.tp_embeddings:
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
config.vocab_size, config.hidden_size, process_group=process_group
|
||||
)
|
||||
else:
|
||||
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
FlashLlamaLayer(
|
||||
config.num_attention_heads,
|
||||
config.hidden_act,
|
||||
config.hidden_size,
|
||||
config.intermediate_size,
|
||||
config.rms_norm_eps,
|
||||
process_group,
|
||||
)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_size
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
|
||||
def post_load_weights(self):
|
||||
if isinstance(self.embed_tokens, TensorParallelEmbedding):
|
||||
self.embed_tokens.add_null_idx()
|
||||
for layer in self.layers:
|
||||
layer: FlashLlamaLayer
|
||||
layer.self_attn.query_key_value.transpose_weight()
|
||||
layer.self_attn.o_proj.transpose_weight()
|
||||
layer.mlp.gate_up_proj.transpose_weight()
|
||||
layer.mlp.down_proj.transpose_weight()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
):
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
# Prefill
|
||||
if past_key_values is None:
|
||||
# Create past tensor
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
len(self.layers),
|
||||
len(hidden_states),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
layer_past_present_indices = None
|
||||
cu_seqlens_q = None
|
||||
# Decode
|
||||
else:
|
||||
# Create indices from cumulative sequence lengths
|
||||
layer_past_present_indices = cu_seqlens[1:] - 1
|
||||
cu_seqlens_q = torch.arange(
|
||||
cu_seqlens.shape[0], dtype=torch.int32, device=hidden_states.device
|
||||
)
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values[i],
|
||||
layer_past_present_indices,
|
||||
cu_seqlens_q,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
|
||||
|
||||
class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
def __init__(self, config, process_group=None):
|
||||
super().__init__()
|
||||
|
||||
self.process_group = process_group
|
||||
if self.process_group is not None:
|
||||
self.world_size = self.process_group.size()
|
||||
self.rank = self.process_group.rank()
|
||||
else:
|
||||
self.world_size = 1
|
||||
self.rank = 0
|
||||
|
||||
self.model = FlashLlamaModel(config, process_group)
|
||||
|
||||
if self.model.tp_embeddings:
|
||||
self.lm_head = FastLinear(
|
||||
config.hidden_size,
|
||||
config.vocab_size // process_group.size(),
|
||||
bias=False,
|
||||
)
|
||||
else:
|
||||
self.lm_head = FastLinear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
def post_load_weights(self):
|
||||
self.model.post_load_weights()
|
||||
self.lm_head.transpose_weight()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
):
|
||||
hidden_states, present = self.model(
|
||||
input_ids, position_ids, cu_seqlens, max_s, past_key_values
|
||||
)
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
if self.model.tp_embeddings:
|
||||
# Logits are sharded, so we need to gather them
|
||||
world_logits = [torch.empty_like(logits) for _ in range(self.world_size)]
|
||||
torch.distributed.all_gather(world_logits, logits, group=self.process_group)
|
||||
world_logits = torch.cat(world_logits, dim=1)
|
||||
|
||||
return world_logits, present
|
||||
return logits, present
|
|
@ -44,6 +44,8 @@ class FlashCausalLMBatch(Batch):
|
|||
|
||||
# Lengths of all generations present in the batch
|
||||
input_lengths: List[int]
|
||||
offsets: List[Optional[int]]
|
||||
token_offsets: List[Optional[int]]
|
||||
|
||||
# Generation helpers
|
||||
next_token_choosers: List[NextTokenChooser]
|
||||
|
@ -67,6 +69,8 @@ class FlashCausalLMBatch(Batch):
|
|||
max_seqlen = 0
|
||||
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
|
||||
|
@ -84,6 +88,8 @@ class FlashCausalLMBatch(Batch):
|
|||
input_length = len(tokenized_input)
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
input_lengths.append(input_length)
|
||||
offsets.append(None)
|
||||
token_offsets.append(None)
|
||||
all_input_ids.append(tokenized_input)
|
||||
|
||||
tokenized_input = torch.tensor(tokenized_input, device=device)
|
||||
|
@ -120,6 +126,8 @@ class FlashCausalLMBatch(Batch):
|
|||
max_seqlen=max_seqlen,
|
||||
past_key_values=None,
|
||||
input_lengths=input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_choosers=next_token_choosers,
|
||||
|
@ -132,6 +140,8 @@ class FlashCausalLMBatch(Batch):
|
|||
# Batch attributes
|
||||
requests = []
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
all_input_ids = []
|
||||
all_input_ids_tensor = []
|
||||
next_token_choosers = []
|
||||
|
@ -150,6 +160,8 @@ class FlashCausalLMBatch(Batch):
|
|||
for i, batch in enumerate(batches):
|
||||
requests.extend(batch.requests)
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
offsets.extend(batch.offsets)
|
||||
token_offsets.extend(batch.token_offsets)
|
||||
all_input_ids.extend(batch.all_input_ids)
|
||||
all_input_ids_tensor.extend(batch.all_input_ids_tensor)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
|
@ -182,6 +194,8 @@ class FlashCausalLMBatch(Batch):
|
|||
max_seqlen=max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
all_input_ids=all_input_ids,
|
||||
all_input_ids_tensor=all_input_ids_tensor,
|
||||
next_token_choosers=next_token_choosers,
|
||||
|
@ -279,6 +293,8 @@ class FlashCausalLM(Model):
|
|||
next_batch_max_seqlen = 0
|
||||
next_batch_past_key_values = []
|
||||
next_batch_input_lengths = []
|
||||
next_batch_offsets = []
|
||||
next_batch_token_offsets = []
|
||||
next_batch_all_input_ids = []
|
||||
next_batch_all_input_ids_tensor = []
|
||||
|
||||
|
@ -292,6 +308,8 @@ class FlashCausalLM(Model):
|
|||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.input_lengths,
|
||||
batch.offsets,
|
||||
batch.token_offsets,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
|
@ -302,6 +320,8 @@ class FlashCausalLM(Model):
|
|||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
offset,
|
||||
token_offset,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
|
@ -334,8 +354,10 @@ class FlashCausalLM(Model):
|
|||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id_item]
|
||||
next_token_text = self.decode_token(
|
||||
next_token_id_item,
|
||||
next_token_text, offset, token_offset = self.decode_token(
|
||||
all_input_ids,
|
||||
offset,
|
||||
token_offset,
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
|
@ -376,6 +398,8 @@ class FlashCausalLM(Model):
|
|||
next_batch_cu_seqlens[-1] + new_input_length
|
||||
)
|
||||
next_batch_input_lengths.append(new_input_length)
|
||||
next_batch_offsets.append(offset)
|
||||
next_batch_token_offsets.append(token_offset)
|
||||
next_batch_all_input_ids.append(all_input_ids)
|
||||
next_batch_all_input_ids_tensor.append(all_input_ids_tensor)
|
||||
next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)
|
||||
|
@ -452,6 +476,8 @@ class FlashCausalLM(Model):
|
|||
max_seqlen=next_batch_max_seqlen,
|
||||
past_key_values=next_batch_past_key_values,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
offsets=next_batch_offsets,
|
||||
token_offsets=next_batch_token_offsets,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
all_input_ids_tensor=next_batch_all_input_ids_tensor,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
|
|
|
@ -0,0 +1,303 @@
|
|||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from opentelemetry import trace
|
||||
from pathlib import Path
|
||||
from safetensors import safe_open
|
||||
from transformers import AutoConfig
|
||||
from transformers.models.llama import LlamaTokenizer
|
||||
from typing import Optional, List
|
||||
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
||||
FlashLlamaForCausalLM,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
)
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
weight_hub_files,
|
||||
LocalEntryNotFoundError,
|
||||
)
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
class FlashLlama(FlashCausalLM):
|
||||
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashLlama is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashLlama does not support quantization")
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
)
|
||||
|
||||
# We do not use from_pretrained as we modified the model internal module layout
|
||||
try:
|
||||
filenames = weight_files(model_id, revision, ".bin")
|
||||
# Local files not found
|
||||
except LocalEntryNotFoundError:
|
||||
hub_files = weight_hub_files(model_id, revision, ".bin")
|
||||
filenames = download_weights(hub_files, model_id, revision)
|
||||
|
||||
with init_empty_weights():
|
||||
model = FlashLlamaForCausalLM(config)
|
||||
|
||||
self.load_weights(model, filenames, device, dtype)
|
||||
self.model = model.eval()
|
||||
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[Path],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
):
|
||||
for filename in filenames:
|
||||
state_dict = torch.load(filename, map_location="cpu")
|
||||
for key, value in state_dict.items():
|
||||
value = value.to(device).to(dtype)
|
||||
|
||||
layer_name = ".".join(key.split(".")[:4])
|
||||
|
||||
# Fused qkv
|
||||
if "q_proj" in key or "k_proj" in key or "v_proj" in key:
|
||||
final_key = layer_name + ".query_key_value.weight"
|
||||
|
||||
# Fused gate and up projs
|
||||
elif "gate_proj" in key or "up_proj" in key:
|
||||
final_key = layer_name + ".gate_up_proj.weight"
|
||||
else:
|
||||
final_key = key
|
||||
|
||||
module_name, param_name = final_key.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
try:
|
||||
current_parameter_tensor = module._parameters[param_name]
|
||||
except KeyError:
|
||||
current_parameter_tensor = None
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
if current_parameter_tensor.device == torch.device("meta"):
|
||||
# Init qkv
|
||||
if "query_key_value" in final_key:
|
||||
module._parameters[param_name] = value.new_empty(
|
||||
(value.shape[0] * 3, value.shape[1])
|
||||
)
|
||||
# Init gate and up proj
|
||||
elif "gate_up_proj" in final_key:
|
||||
module._parameters[param_name] = value.new_empty(
|
||||
(value.shape[0] * 2, value.shape[1])
|
||||
)
|
||||
|
||||
# Copy to correct slice
|
||||
if "q_proj" in key:
|
||||
module._parameters[param_name][: value.shape[0]] = value
|
||||
elif "k_proj" in key:
|
||||
module._parameters[param_name][
|
||||
value.shape[0] : value.shape[0] * 2
|
||||
] = value
|
||||
elif "v_proj" in key:
|
||||
module._parameters[param_name][value.shape[0] * 2 :] = value
|
||||
elif "gate_proj" in key:
|
||||
module._parameters[param_name][: value.shape[0]] = value
|
||||
elif "up_proj" in key:
|
||||
module._parameters[param_name][value.shape[0] :] = value
|
||||
else:
|
||||
if current_parameter_tensor.shape != value.shape:
|
||||
raise ValueError(
|
||||
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
|
||||
)
|
||||
module._parameters[param_name] = value
|
||||
else:
|
||||
module._buffers[param_name] = value
|
||||
|
||||
del value
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
model.post_load_weights()
|
||||
|
||||
|
||||
class FlashLlamaSharded(FlashLlama):
|
||||
def __init__(
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashLlama is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashLlama does not support quantization")
|
||||
|
||||
tokenizer = LlamaTokenizer.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
padding_side="left",
|
||||
truncation_side="left",
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
with init_empty_weights():
|
||||
model = FlashLlamaForCausalLM(config, process_group=self.process_group)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashCausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
layer_name = ".".join(name.split(".")[:4])
|
||||
|
||||
# Fused qkv
|
||||
if "q_proj" in name or "k_proj" in name or "v_proj" in name:
|
||||
final_name = layer_name + ".query_key_value.weight"
|
||||
|
||||
# Fused gate and up projs
|
||||
elif "gate_proj" in name or "up_proj" in name:
|
||||
final_name = layer_name + ".gate_up_proj.weight"
|
||||
else:
|
||||
final_name = name
|
||||
|
||||
module_name, param_name = final_name.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif name == "lm_head.weight" and model.model.tp_embeddings:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
try:
|
||||
tensor = slice_[:]
|
||||
except:
|
||||
tensor = f.get_tensor(name)
|
||||
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
try:
|
||||
current_parameter_tensor = module._parameters[param_name]
|
||||
except KeyError:
|
||||
current_parameter_tensor = None
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
if current_parameter_tensor.device == torch.device("meta"):
|
||||
# Init qkv
|
||||
if "query_key_value" in final_name:
|
||||
module._parameters[param_name] = tensor.new_empty(
|
||||
(tensor.shape[0] * 3, tensor.shape[1])
|
||||
)
|
||||
# Init gate and up proj
|
||||
elif "gate_up_proj" in final_name:
|
||||
module._parameters[param_name] = tensor.new_empty(
|
||||
(tensor.shape[0] * 2, tensor.shape[1])
|
||||
)
|
||||
|
||||
# Init gate and up proj
|
||||
if "q_proj" in name:
|
||||
module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||
elif "k_proj" in name:
|
||||
module._parameters[param_name][
|
||||
tensor.shape[0] : tensor.shape[0] * 2
|
||||
] = tensor
|
||||
elif "v_proj" in name:
|
||||
module._parameters[param_name][
|
||||
tensor.shape[0] * 2 :
|
||||
] = tensor
|
||||
elif "gate_proj" in name:
|
||||
module._parameters[param_name][: tensor.shape[0]] = tensor
|
||||
elif "up_proj" in name:
|
||||
module._parameters[param_name][tensor.shape[0] :] = tensor
|
||||
else:
|
||||
if current_parameter_tensor.shape != tensor.shape:
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
module._parameters[param_name] = tensor
|
||||
|
||||
else:
|
||||
module._buffers[param_name] = tensor
|
||||
torch.cuda.empty_cache()
|
||||
model.post_load_weights()
|
|
@ -93,7 +93,8 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
|||
inputs = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
|
@ -101,7 +102,8 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
|||
for r in pb.requests:
|
||||
# Add escape_custom_split_sequence to the CausalLMBatch logic
|
||||
inputs.append(escape_custom_split_sequence(r.inputs))
|
||||
input_lengths.append(r.input_length)
|
||||
offsets.append(None)
|
||||
token_offsets.append(None)
|
||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||
stopping_criteria = StoppingCriteria.from_pb(
|
||||
r.stopping_parameters, tokenizer
|
||||
|
@ -146,6 +148,8 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
|||
past_key_values=None,
|
||||
all_input_ids=all_input_ids,
|
||||
input_lengths=input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=pb.size,
|
||||
|
|
|
@ -15,15 +15,6 @@ class Model(ABC):
|
|||
self.all_special_ids = set(tokenizer.all_special_ids)
|
||||
self.device = device
|
||||
|
||||
# see `decode_token` method
|
||||
self.tokenizer.add_special_tokens(
|
||||
{"additional_special_tokens": ["<decode-token>"]}
|
||||
)
|
||||
self.special_decode_token_id = self.tokenizer.convert_tokens_to_ids(
|
||||
"<decode-token>"
|
||||
)
|
||||
self.special_decode_token_length = len("<decode-token>")
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def batch_type(self) -> Type[B]:
|
||||
|
@ -33,11 +24,38 @@ class Model(ABC):
|
|||
def generate_token(self, batch: B) -> Tuple[List[GeneratedText], Optional[B]]:
|
||||
raise NotImplementedError
|
||||
|
||||
def decode_token(self, token_id: int) -> str:
|
||||
def decode_token(
|
||||
self,
|
||||
all_input_ids: List[int],
|
||||
offset: Optional[int] = None,
|
||||
token_offset: Optional[int] = None,
|
||||
) -> Tuple[str, Optional[int], Optional[int]]:
|
||||
"""Hack to hopefully support generate_stream for the maximum number of tokenizers"""
|
||||
# append token to special decode token and decode both
|
||||
result = self.tokenizer.decode(
|
||||
[self.special_decode_token_id, token_id], skip_special_tokens=False
|
||||
if all_input_ids[-1] in self.all_special_ids:
|
||||
return (
|
||||
self.tokenizer.decode(all_input_ids[-1], skip_special_tokens=False),
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
if token_offset is None:
|
||||
token_offset = len(all_input_ids) - 3
|
||||
|
||||
# Decode token_offset token minus last one and token_offset tokens
|
||||
results = self.tokenizer.batch_decode(
|
||||
[all_input_ids[token_offset:-1], all_input_ids[token_offset:]],
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
# slice to remove special decode token
|
||||
return result[self.special_decode_token_length :]
|
||||
|
||||
# default offset is only the last token
|
||||
if offset is None:
|
||||
offset = len(results[0])
|
||||
|
||||
# get text
|
||||
text = results[1][offset:]
|
||||
|
||||
# if text is utf-8
|
||||
if text and text[-1] != "<EFBFBD>":
|
||||
return text, None, None
|
||||
else:
|
||||
return "", offset, token_offset
|
||||
|
|
|
@ -38,6 +38,8 @@ class Seq2SeqLMBatch(Batch):
|
|||
# Lengths of all generations present in the batch
|
||||
input_lengths: List[int]
|
||||
decoder_input_lengths: List[int]
|
||||
offsets: List[Optional[int]]
|
||||
token_offsets: List[Optional[int]]
|
||||
|
||||
# Generation helpers
|
||||
next_token_choosers: List[NextTokenChooser]
|
||||
|
@ -71,6 +73,8 @@ class Seq2SeqLMBatch(Batch):
|
|||
|
||||
decoder_input_ids = []
|
||||
decoder_input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
|
@ -80,6 +84,8 @@ class Seq2SeqLMBatch(Batch):
|
|||
# Decoder sequence only contains the bos_token
|
||||
decoder_input_ids.append(tokenizer.bos_token_id)
|
||||
decoder_input_lengths.append(1)
|
||||
offsets.append(None)
|
||||
token_offsets.append(None)
|
||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||
stopping_criteria = StoppingCriteria.from_pb(
|
||||
r.stopping_parameters, tokenizer
|
||||
|
@ -117,6 +123,8 @@ class Seq2SeqLMBatch(Batch):
|
|||
past_key_values=None,
|
||||
input_lengths=input_lengths.tolist(),
|
||||
decoder_input_lengths=decoder_input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=len(pb.requests),
|
||||
|
@ -147,6 +155,8 @@ class Seq2SeqLMBatch(Batch):
|
|||
requests = []
|
||||
input_lengths = []
|
||||
decoder_input_lengths = []
|
||||
offsets = []
|
||||
token_offsets = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
|
@ -166,6 +176,8 @@ class Seq2SeqLMBatch(Batch):
|
|||
requests.extend(batch.requests)
|
||||
input_lengths.extend(batch.input_lengths)
|
||||
decoder_input_lengths.extend(batch.decoder_input_lengths)
|
||||
offsets.extend(batch.offsets)
|
||||
token_offsets.extend(batch.token_offsets)
|
||||
next_token_choosers.extend(batch.next_token_choosers)
|
||||
stopping_criterias.extend(batch.stopping_criterias)
|
||||
|
||||
|
@ -303,6 +315,8 @@ class Seq2SeqLMBatch(Batch):
|
|||
past_key_values=past_key_values,
|
||||
input_lengths=input_lengths,
|
||||
decoder_input_lengths=decoder_input_lengths,
|
||||
offsets=offsets,
|
||||
token_offsets=token_offsets,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
size=total_batch_size,
|
||||
|
@ -335,7 +349,7 @@ class Seq2SeqLM(Model):
|
|||
load_in_8bit=quantize,
|
||||
).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
model_id, revision=revision, padding_side="left", truncation_side="left"
|
||||
)
|
||||
tokenizer.bos_token_id = self.model.config.decoder_start_token_id
|
||||
|
||||
|
@ -422,6 +436,8 @@ class Seq2SeqLM(Model):
|
|||
|
||||
# New values for next forward
|
||||
next_batch_input_lengths = []
|
||||
next_batch_offsets = []
|
||||
next_batch_token_offsets = []
|
||||
next_batch_decoder_input_ids = []
|
||||
next_batch_decoder_input_lengths = []
|
||||
|
||||
|
@ -437,6 +453,8 @@ class Seq2SeqLM(Model):
|
|||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.input_lengths,
|
||||
batch.offsets,
|
||||
batch.token_offsets,
|
||||
batch.decoder_input_lengths,
|
||||
logits,
|
||||
batch.next_token_choosers,
|
||||
|
@ -448,6 +466,8 @@ class Seq2SeqLM(Model):
|
|||
for i, (
|
||||
request,
|
||||
input_length,
|
||||
offset,
|
||||
token_offset,
|
||||
decoder_input_length,
|
||||
logits,
|
||||
next_token_chooser,
|
||||
|
@ -466,8 +486,8 @@ class Seq2SeqLM(Model):
|
|||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id]
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_text = self.decode_token(
|
||||
next_token_id_squeezed,
|
||||
next_token_text, offset, token_offset = self.decode_token(
|
||||
decoder_input_ids, offset, token_offset
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
|
@ -495,6 +515,8 @@ class Seq2SeqLM(Model):
|
|||
next_batch_size += 1
|
||||
next_batch_input_lengths.append(input_length)
|
||||
next_batch_decoder_input_lengths.append(new_decoder_input_length)
|
||||
next_batch_offsets.append(offset)
|
||||
next_batch_token_offsets.append(token_offset)
|
||||
next_batch_max_input_length = max(
|
||||
next_batch_max_input_length, input_length
|
||||
)
|
||||
|
@ -580,6 +602,8 @@ class Seq2SeqLM(Model):
|
|||
past_key_values=next_batch_past_key_values,
|
||||
input_lengths=next_batch_input_lengths,
|
||||
decoder_input_lengths=next_batch_decoder_input_lengths,
|
||||
offsets=next_batch_offsets,
|
||||
token_offsets=next_batch_token_offsets,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
size=next_batch_size,
|
||||
|
|
Loading…
Reference in New Issue