Add a new README (#3)
* Rename README.md to README-HuggingFace.md * Add Preemo's README
This commit is contained in:
parent
afd04dc71e
commit
9048a80f8f
|
@ -0,0 +1,282 @@
|
|||
<div align="center">
|
||||
|
||||
![image](https://github.com/huggingface/text-generation-inference/assets/3841370/38ba1531-ea0d-4851-b31a-a6d4ddc944b0)
|
||||
|
||||
# Text Generation Inference
|
||||
|
||||
<a href="https://github.com/huggingface/text-generation-inference">
|
||||
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
|
||||
<img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
|
||||
</a>
|
||||
<a href="https://huggingface.github.io/text-generation-inference">
|
||||
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
|
||||
</a>
|
||||
</div>
|
||||
|
||||
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
|
||||
to power LLMs api-inference widgets.
|
||||
|
||||
## Table of contents
|
||||
|
||||
- [Features](#features)
|
||||
- [Optimized Architectures](#optimized-architectures)
|
||||
- [Get Started](#get-started)
|
||||
- [Docker](#docker)
|
||||
- [API Documentation](#api-documentation)
|
||||
- [Using a private or gated model](#using-a-private-or-gated-model)
|
||||
- [A note on Shared Memory](#a-note-on-shared-memory-shm)
|
||||
- [Distributed Tracing](#distributed-tracing)
|
||||
- [Local Install](#local-install)
|
||||
- [CUDA Kernels](#cuda-kernels)
|
||||
- [Run Falcon](#run-falcon)
|
||||
- [Run](#run)
|
||||
- [Quantization](#quantization)
|
||||
- [Develop](#develop)
|
||||
- [Testing](#testing)
|
||||
- [Other supported hardware](#other-supported-hardware)
|
||||
|
||||
## Features
|
||||
|
||||
- Serve the most popular Large Language Models with a simple launcher
|
||||
- Tensor Parallelism for faster inference on multiple GPUs
|
||||
- Token streaming using Server-Sent Events (SSE)
|
||||
- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
|
||||
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
|
||||
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
|
||||
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
|
||||
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
|
||||
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
|
||||
- Stop sequences
|
||||
- Log probabilities
|
||||
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
|
||||
|
||||
## Optimized architectures
|
||||
|
||||
- [BLOOM](https://huggingface.co/bigscience/bloom)
|
||||
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
|
||||
- [Galactica](https://huggingface.co/facebook/galactica-120b)
|
||||
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
|
||||
- [Llama](https://github.com/facebookresearch/llama)
|
||||
- [OPT](https://huggingface.co/facebook/opt-66b)
|
||||
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
|
||||
- [Starcoder](https://huggingface.co/bigcode/starcoder)
|
||||
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
|
||||
- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
|
||||
- [MPT](https://huggingface.co/mosaicml/mpt-30b)
|
||||
- [Llama V2](https://huggingface.co/meta-llama)
|
||||
|
||||
Other architectures are supported on a best effort basis using:
|
||||
|
||||
`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
|
||||
|
||||
or
|
||||
|
||||
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
|
||||
|
||||
## Get started
|
||||
|
||||
### Docker
|
||||
|
||||
The easiest way of getting started is using the official Docker container:
|
||||
|
||||
```shell
|
||||
model=tiiuae/falcon-7b-instruct
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.4 --model-id $model
|
||||
```
|
||||
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
|
||||
|
||||
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli:
|
||||
```
|
||||
text-generation-launcher --help
|
||||
```
|
||||
|
||||
You can then query the model using either the `/generate` or `/generate_stream` routes:
|
||||
|
||||
```shell
|
||||
curl 127.0.0.1:8080/generate \
|
||||
-X POST \
|
||||
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
```shell
|
||||
curl 127.0.0.1:8080/generate_stream \
|
||||
-X POST \
|
||||
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
or from Python:
|
||||
|
||||
```shell
|
||||
pip install text-generation
|
||||
```
|
||||
|
||||
```python
|
||||
from text_generation import Client
|
||||
|
||||
client = Client("http://127.0.0.1:8080")
|
||||
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)
|
||||
|
||||
text = ""
|
||||
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
|
||||
if not response.token.special:
|
||||
text += response.token.text
|
||||
print(text)
|
||||
```
|
||||
|
||||
### API documentation
|
||||
|
||||
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
|
||||
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
|
||||
|
||||
### Using a private or gated model
|
||||
|
||||
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
|
||||
`text-generation-inference`. This allows you to gain access to protected resources.
|
||||
|
||||
For example, if you want to serve the gated Llama V2 model variants:
|
||||
|
||||
1. Go to https://huggingface.co/settings/tokens
|
||||
2. Copy your cli READ token
|
||||
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`
|
||||
|
||||
or with Docker:
|
||||
|
||||
```shell
|
||||
model=meta-llama/Llama-2-7b-chat-hf
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
token=<your cli READ token>
|
||||
|
||||
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model
|
||||
```
|
||||
|
||||
### A note on Shared Memory (shm)
|
||||
|
||||
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
|
||||
`PyTorch` to do distributed training/inference. `text-generation-inference` make
|
||||
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.
|
||||
|
||||
In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
|
||||
peer-to-peer using NVLink or PCI is not possible.
|
||||
|
||||
To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.
|
||||
|
||||
If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
|
||||
creating a volume with:
|
||||
|
||||
```yaml
|
||||
- name: shm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 1Gi
|
||||
```
|
||||
|
||||
and mounting it to `/dev/shm`.
|
||||
|
||||
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
|
||||
this will impact performance.
|
||||
|
||||
### Distributed Tracing
|
||||
|
||||
`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
|
||||
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.
|
||||
|
||||
### Local install
|
||||
|
||||
You can also opt to install `text-generation-inference` locally.
|
||||
|
||||
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
|
||||
Python 3.9, e.g. using `conda`:
|
||||
|
||||
```shell
|
||||
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
|
||||
|
||||
conda create -n text-generation-inference python=3.9
|
||||
conda activate text-generation-inference
|
||||
```
|
||||
|
||||
You may also need to install Protoc.
|
||||
|
||||
On Linux:
|
||||
|
||||
```shell
|
||||
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
|
||||
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
|
||||
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
|
||||
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
|
||||
rm -f $PROTOC_ZIP
|
||||
```
|
||||
|
||||
On MacOS, using Homebrew:
|
||||
|
||||
```shell
|
||||
brew install protobuf
|
||||
```
|
||||
|
||||
Then run:
|
||||
|
||||
```shell
|
||||
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
|
||||
make run-falcon-7b-instruct
|
||||
```
|
||||
|
||||
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
|
||||
|
||||
```shell
|
||||
sudo apt-get install libssl-dev gcc -y
|
||||
```
|
||||
|
||||
### CUDA Kernels
|
||||
|
||||
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
|
||||
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
|
||||
|
||||
Be aware that the official Docker image has them enabled by default.
|
||||
|
||||
## Run Falcon
|
||||
|
||||
### Run
|
||||
|
||||
```shell
|
||||
make run-falcon-7b-instruct
|
||||
```
|
||||
|
||||
### Quantization
|
||||
|
||||
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
|
||||
|
||||
```shell
|
||||
make run-falcon-7b-instruct-quantize
|
||||
```
|
||||
|
||||
## Develop
|
||||
|
||||
```shell
|
||||
make server-dev
|
||||
make router-dev
|
||||
```
|
||||
|
||||
## Testing
|
||||
|
||||
```shell
|
||||
# python
|
||||
make python-server-tests
|
||||
make python-client-tests
|
||||
# or both server and client tests
|
||||
make python-tests
|
||||
# rust cargo tests
|
||||
make rust-tests
|
||||
# integration tests
|
||||
make integration-tests
|
||||
```
|
||||
|
||||
|
||||
## Other supported hardware
|
||||
|
||||
TGI is also supported on the following AI hardware accelerators:
|
||||
- *Habana first-gen Gaudi and Gaudi2:* checkout [here](https://github.com/huggingface/optimum-habana/tree/main/text-generation-inference) how to serve models with TGI on Gaudi and Gaudi2 with [Optimum Habana](https://huggingface.co/docs/optimum/habana/index)
|
283
README.md
283
README.md
|
@ -1,282 +1,15 @@
|
|||
<div align="center">
|
||||
|
||||
![image](https://github.com/huggingface/text-generation-inference/assets/3841370/38ba1531-ea0d-4851-b31a-a6d4ddc944b0)
|
||||
|
||||
# Text Generation Inference
|
||||
|
||||
<a href="https://github.com/huggingface/text-generation-inference">
|
||||
<img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
|
||||
<img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
|
||||
</a>
|
||||
<a href="https://huggingface.github.io/text-generation-inference">
|
||||
<img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
|
||||
</a>
|
||||
</div>
|
||||
This is Preemo's fork of `text-generation-inference`, originally developed by Hugging Face. The original README is at [README-HuggingFace.md](README-HuggingFace.md). Since Hugging Face's `text-generation-inference` is no longer open-source, we have forked it and will continue to develop it here.
|
||||
|
||||
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
|
||||
to power LLMs api-inference widgets.
|
||||
Our goal is to create an open-source text generation inference server that is modularized to allow for easy add state-of-the-art models, functionalities and optimizations. Functionalities and optimizations should be composable, so that users can easily combine them to create a custom inference server that fits their needs.
|
||||
|
||||
## Table of contents
|
||||
## our plan
|
||||
|
||||
- [Features](#features)
|
||||
- [Optimized Architectures](#optimized-architectures)
|
||||
- [Get Started](#get-started)
|
||||
- [Docker](#docker)
|
||||
- [API Documentation](#api-documentation)
|
||||
- [Using a private or gated model](#using-a-private-or-gated-model)
|
||||
- [A note on Shared Memory](#a-note-on-shared-memory-shm)
|
||||
- [Distributed Tracing](#distributed-tracing)
|
||||
- [Local Install](#local-install)
|
||||
- [CUDA Kernels](#cuda-kernels)
|
||||
- [Run Falcon](#run-falcon)
|
||||
- [Run](#run)
|
||||
- [Quantization](#quantization)
|
||||
- [Develop](#develop)
|
||||
- [Testing](#testing)
|
||||
- [Other supported hardware](#other-supported-hardware)
|
||||
We at Preemo are currently busy working on our first release of our other product, so we expect to be able to start open-source development on this repository in September 2023. We will be working on the following, to ease the external contributions:
|
||||
|
||||
## Features
|
||||
- [ ] Adding a public visible CI/CD pipeline that runs tests and builds docker images
|
||||
- [ ] Unifying the build tools
|
||||
- [ ] Modularizing the codebase, introducing a plugin system
|
||||
|
||||
- Serve the most popular Large Language Models with a simple launcher
|
||||
- Tensor Parallelism for faster inference on multiple GPUs
|
||||
- Token streaming using Server-Sent Events (SSE)
|
||||
- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
|
||||
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
|
||||
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
|
||||
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
|
||||
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
|
||||
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
|
||||
- Stop sequences
|
||||
- Log probabilities
|
||||
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
|
||||
|
||||
## Optimized architectures
|
||||
|
||||
- [BLOOM](https://huggingface.co/bigscience/bloom)
|
||||
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
|
||||
- [Galactica](https://huggingface.co/facebook/galactica-120b)
|
||||
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
|
||||
- [Llama](https://github.com/facebookresearch/llama)
|
||||
- [OPT](https://huggingface.co/facebook/opt-66b)
|
||||
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
|
||||
- [Starcoder](https://huggingface.co/bigcode/starcoder)
|
||||
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
|
||||
- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
|
||||
- [MPT](https://huggingface.co/mosaicml/mpt-30b)
|
||||
- [Llama V2](https://huggingface.co/meta-llama)
|
||||
|
||||
Other architectures are supported on a best effort basis using:
|
||||
|
||||
`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`
|
||||
|
||||
or
|
||||
|
||||
`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`
|
||||
|
||||
## Get started
|
||||
|
||||
### Docker
|
||||
|
||||
The easiest way of getting started is using the official Docker container:
|
||||
|
||||
```shell
|
||||
model=tiiuae/falcon-7b-instruct
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.4 --model-id $model
|
||||
```
|
||||
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
|
||||
|
||||
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli:
|
||||
```
|
||||
text-generation-launcher --help
|
||||
```
|
||||
|
||||
You can then query the model using either the `/generate` or `/generate_stream` routes:
|
||||
|
||||
```shell
|
||||
curl 127.0.0.1:8080/generate \
|
||||
-X POST \
|
||||
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
```shell
|
||||
curl 127.0.0.1:8080/generate_stream \
|
||||
-X POST \
|
||||
-d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
|
||||
-H 'Content-Type: application/json'
|
||||
```
|
||||
|
||||
or from Python:
|
||||
|
||||
```shell
|
||||
pip install text-generation
|
||||
```
|
||||
|
||||
```python
|
||||
from text_generation import Client
|
||||
|
||||
client = Client("http://127.0.0.1:8080")
|
||||
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)
|
||||
|
||||
text = ""
|
||||
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
|
||||
if not response.token.special:
|
||||
text += response.token.text
|
||||
print(text)
|
||||
```
|
||||
|
||||
### API documentation
|
||||
|
||||
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
|
||||
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
|
||||
|
||||
### Using a private or gated model
|
||||
|
||||
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
|
||||
`text-generation-inference`. This allows you to gain access to protected resources.
|
||||
|
||||
For example, if you want to serve the gated Llama V2 model variants:
|
||||
|
||||
1. Go to https://huggingface.co/settings/tokens
|
||||
2. Copy your cli READ token
|
||||
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`
|
||||
|
||||
or with Docker:
|
||||
|
||||
```shell
|
||||
model=meta-llama/Llama-2-7b-chat-hf
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
token=<your cli READ token>
|
||||
|
||||
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model
|
||||
```
|
||||
|
||||
### A note on Shared Memory (shm)
|
||||
|
||||
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
|
||||
`PyTorch` to do distributed training/inference. `text-generation-inference` make
|
||||
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.
|
||||
|
||||
In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
|
||||
peer-to-peer using NVLink or PCI is not possible.
|
||||
|
||||
To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.
|
||||
|
||||
If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
|
||||
creating a volume with:
|
||||
|
||||
```yaml
|
||||
- name: shm
|
||||
emptyDir:
|
||||
medium: Memory
|
||||
sizeLimit: 1Gi
|
||||
```
|
||||
|
||||
and mounting it to `/dev/shm`.
|
||||
|
||||
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
|
||||
this will impact performance.
|
||||
|
||||
### Distributed Tracing
|
||||
|
||||
`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
|
||||
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.
|
||||
|
||||
### Local install
|
||||
|
||||
You can also opt to install `text-generation-inference` locally.
|
||||
|
||||
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
|
||||
Python 3.9, e.g. using `conda`:
|
||||
|
||||
```shell
|
||||
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
|
||||
|
||||
conda create -n text-generation-inference python=3.9
|
||||
conda activate text-generation-inference
|
||||
```
|
||||
|
||||
You may also need to install Protoc.
|
||||
|
||||
On Linux:
|
||||
|
||||
```shell
|
||||
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
|
||||
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
|
||||
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
|
||||
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
|
||||
rm -f $PROTOC_ZIP
|
||||
```
|
||||
|
||||
On MacOS, using Homebrew:
|
||||
|
||||
```shell
|
||||
brew install protobuf
|
||||
```
|
||||
|
||||
Then run:
|
||||
|
||||
```shell
|
||||
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
|
||||
make run-falcon-7b-instruct
|
||||
```
|
||||
|
||||
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
|
||||
|
||||
```shell
|
||||
sudo apt-get install libssl-dev gcc -y
|
||||
```
|
||||
|
||||
### CUDA Kernels
|
||||
|
||||
The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
|
||||
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
|
||||
|
||||
Be aware that the official Docker image has them enabled by default.
|
||||
|
||||
## Run Falcon
|
||||
|
||||
### Run
|
||||
|
||||
```shell
|
||||
make run-falcon-7b-instruct
|
||||
```
|
||||
|
||||
### Quantization
|
||||
|
||||
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
|
||||
|
||||
```shell
|
||||
make run-falcon-7b-instruct-quantize
|
||||
```
|
||||
|
||||
## Develop
|
||||
|
||||
```shell
|
||||
make server-dev
|
||||
make router-dev
|
||||
```
|
||||
|
||||
## Testing
|
||||
|
||||
```shell
|
||||
# python
|
||||
make python-server-tests
|
||||
make python-client-tests
|
||||
# or both server and client tests
|
||||
make python-tests
|
||||
# rust cargo tests
|
||||
make rust-tests
|
||||
# integration tests
|
||||
make integration-tests
|
||||
```
|
||||
|
||||
|
||||
## Other supported hardware
|
||||
|
||||
TGI is also supported on the following AI hardware accelerators:
|
||||
- *Habana first-gen Gaudi and Gaudi2:* checkout [here](https://github.com/huggingface/optimum-habana/tree/main/text-generation-inference) how to serve models with TGI on Gaudi and Gaudi2 with [Optimum Habana](https://huggingface.co/docs/optimum/habana/index)
|
||||
Our long-term goal is to grow the community around this repository, as a playground for trying out new ideas and optimizations in LLM inference. We at Preemo will implement features that interest us, but we also welcome contributions from the community, as long as they are modularized and composable.
|
||||
|
|
Loading…
Reference in New Issue