feat(server): load santacoder/starcoder models with safetensors (#393)
Fix #366
This commit is contained in:
parent
c0928e6f26
commit
95d3546976
|
@ -546,11 +546,7 @@ enum LauncherError {
|
||||||
WebserverCannotStart,
|
WebserverCannotStart,
|
||||||
}
|
}
|
||||||
|
|
||||||
fn download_convert_model(
|
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
|
||||||
args: &Args,
|
|
||||||
auto_convert: bool,
|
|
||||||
running: Arc<AtomicBool>,
|
|
||||||
) -> Result<(), LauncherError> {
|
|
||||||
let mut download_argv = vec![
|
let mut download_argv = vec![
|
||||||
"text-generation-server".to_string(),
|
"text-generation-server".to_string(),
|
||||||
"download-weights".to_string(),
|
"download-weights".to_string(),
|
||||||
|
@ -562,11 +558,6 @@ fn download_convert_model(
|
||||||
"--json-output".to_string(),
|
"--json-output".to_string(),
|
||||||
];
|
];
|
||||||
|
|
||||||
// Auto convert weights to safetensors
|
|
||||||
if auto_convert {
|
|
||||||
download_argv.push("--auto-convert".to_string());
|
|
||||||
}
|
|
||||||
|
|
||||||
// Model optional revision
|
// Model optional revision
|
||||||
if let Some(revision) = &args.revision {
|
if let Some(revision) = &args.revision {
|
||||||
download_argv.push("--revision".to_string());
|
download_argv.push("--revision".to_string());
|
||||||
|
@ -932,11 +923,8 @@ fn main() -> Result<(), LauncherError> {
|
||||||
})
|
})
|
||||||
.expect("Error setting Ctrl-C handler");
|
.expect("Error setting Ctrl-C handler");
|
||||||
|
|
||||||
// auto_convert is only needed for sharded models as we do not require safetensors in
|
|
||||||
// single shard mode
|
|
||||||
let auto_convert = num_shard > 1;
|
|
||||||
// Download and convert model weights
|
// Download and convert model weights
|
||||||
download_convert_model(&args, auto_convert, running.clone())?;
|
download_convert_model(&args, running.clone())?;
|
||||||
|
|
||||||
// Shared shutdown bool
|
// Shared shutdown bool
|
||||||
let shutdown = Arc::new(Mutex::new(false));
|
let shutdown = Arc::new(Mutex::new(false));
|
||||||
|
|
|
@ -54,12 +54,7 @@ class FlashSantacoder(FlashCausalLM):
|
||||||
)
|
)
|
||||||
|
|
||||||
# We do not use from_pretrained as we modified the model internal module layout
|
# We do not use from_pretrained as we modified the model internal module layout
|
||||||
try:
|
filenames = weight_files(model_id, revision, ".safetensors")
|
||||||
filenames = weight_files(model_id, revision, ".bin")
|
|
||||||
# Local files not found
|
|
||||||
except LocalEntryNotFoundError:
|
|
||||||
hub_files = weight_hub_files(model_id, revision, ".bin")
|
|
||||||
filenames = download_weights(hub_files, model_id, revision)
|
|
||||||
|
|
||||||
with init_empty_weights():
|
with init_empty_weights():
|
||||||
model = FlashSantacoderForCausalLM(config)
|
model = FlashSantacoderForCausalLM(config)
|
||||||
|
@ -91,85 +86,100 @@ class FlashSantacoder(FlashCausalLM):
|
||||||
transpose: bool,
|
transpose: bool,
|
||||||
):
|
):
|
||||||
for filename in filenames:
|
for filename in filenames:
|
||||||
state_dict = torch.load(filename, map_location="cpu")
|
with safe_open(
|
||||||
for key, value in state_dict.items():
|
filename, framework="pt", device=str(device) if quantize is None else "cpu"
|
||||||
value = value.to(device if quantize is None else "cpu").to(dtype)
|
) as f:
|
||||||
|
for key in f.keys():
|
||||||
|
value = f.get_tensor(key)
|
||||||
|
value = value.to(device if quantize is None else "cpu").to(dtype)
|
||||||
|
|
||||||
layer_name = ".".join(key.split(".")[:4])
|
layer_name = ".".join(key.split(".")[:4])
|
||||||
|
|
||||||
# Fused qkv
|
# Fused qkv
|
||||||
if "q_attn.weight" in key or "kv_attn.weight" in key:
|
if "q_attn.weight" in key or "kv_attn.weight" in key:
|
||||||
final_key = layer_name + ".c_attn.weight"
|
final_key = layer_name + ".c_attn.weight"
|
||||||
elif "q_attn.bias" in key or "kv_attn.bias" in key:
|
elif "q_attn.bias" in key or "kv_attn.bias" in key:
|
||||||
final_key = layer_name + ".c_attn.bias"
|
final_key = layer_name + ".c_attn.bias"
|
||||||
|
|
||||||
else:
|
|
||||||
final_key = key
|
|
||||||
|
|
||||||
module_name, param_name = final_key.rsplit(".", 1)
|
|
||||||
module = model.get_submodule(module_name)
|
|
||||||
|
|
||||||
try:
|
|
||||||
current_parameter_tensor = module._parameters[param_name]
|
|
||||||
except KeyError:
|
|
||||||
current_parameter_tensor = None
|
|
||||||
|
|
||||||
if current_parameter_tensor is not None:
|
|
||||||
if transpose and (
|
|
||||||
"c_fc.weight" in key
|
|
||||||
or "c_proj.weight" in key
|
|
||||||
or "q_attn.weight" in key
|
|
||||||
or "kv_attn.weight" in key
|
|
||||||
or "c_attn.weight" in key
|
|
||||||
):
|
|
||||||
# Tranpose as we use nn.Linear instead of Conv1D
|
|
||||||
value = value.T
|
|
||||||
|
|
||||||
if current_parameter_tensor.device == torch.device("meta"):
|
|
||||||
# Init qkv
|
|
||||||
if "c_attn.weight" in final_key:
|
|
||||||
module._parameters[param_name] = value.new_empty(
|
|
||||||
(
|
|
||||||
model.transformer.head_size
|
|
||||||
* (model.transformer.num_heads + 2),
|
|
||||||
value.shape[1],
|
|
||||||
)
|
|
||||||
)
|
|
||||||
elif "c_attn.bias" in final_key:
|
|
||||||
module._parameters[param_name] = value.new_empty(
|
|
||||||
(
|
|
||||||
model.transformer.head_size
|
|
||||||
* (model.transformer.num_heads + 2)
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Copy to correct slice
|
|
||||||
if "q_attn.weight" in key:
|
|
||||||
module._parameters[param_name][: value.shape[0]] = value
|
|
||||||
elif "q_attn.bias" in key:
|
|
||||||
module._parameters[param_name][: value.shape[0]] = value
|
|
||||||
elif "kv_attn.weight" in key:
|
|
||||||
module._parameters[param_name][
|
|
||||||
model.transformer.head_size * model.transformer.num_heads :
|
|
||||||
] = value
|
|
||||||
elif "kv_attn.bias" in key:
|
|
||||||
module._parameters[param_name][
|
|
||||||
model.transformer.head_size * model.transformer.num_heads :
|
|
||||||
] = value
|
|
||||||
else:
|
else:
|
||||||
if current_parameter_tensor.shape != value.shape:
|
final_key = key
|
||||||
raise ValueError(
|
|
||||||
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
|
|
||||||
)
|
|
||||||
module._parameters[param_name] = value
|
|
||||||
else:
|
|
||||||
module._buffers[param_name] = value
|
|
||||||
|
|
||||||
del value
|
module_name, param_name = final_key.rsplit(".", 1)
|
||||||
|
module = model.get_submodule(module_name)
|
||||||
|
|
||||||
|
try:
|
||||||
|
current_parameter_tensor = module._parameters[param_name]
|
||||||
|
except KeyError:
|
||||||
|
current_parameter_tensor = None
|
||||||
|
|
||||||
|
if current_parameter_tensor is not None:
|
||||||
|
if transpose and (
|
||||||
|
"c_fc.weight" in key
|
||||||
|
or "c_proj.weight" in key
|
||||||
|
or "q_attn.weight" in key
|
||||||
|
or "kv_attn.weight" in key
|
||||||
|
or "c_attn.weight" in key
|
||||||
|
):
|
||||||
|
# Tranpose as we use nn.Linear instead of Conv1D
|
||||||
|
value = value.T
|
||||||
|
|
||||||
|
if current_parameter_tensor.device == torch.device("meta"):
|
||||||
|
# Init qkv
|
||||||
|
if "c_attn.weight" in final_key:
|
||||||
|
module._parameters[param_name] = value.new_empty(
|
||||||
|
(
|
||||||
|
model.transformer.head_size
|
||||||
|
* (model.transformer.num_heads + 2),
|
||||||
|
value.shape[1],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
elif "c_attn.bias" in final_key:
|
||||||
|
module._parameters[param_name] = value.new_empty(
|
||||||
|
(
|
||||||
|
model.transformer.head_size
|
||||||
|
* (model.transformer.num_heads + 2)
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Copy to correct slice
|
||||||
|
if "q_attn.weight" in key:
|
||||||
|
module._parameters[param_name][: value.shape[0]] = value
|
||||||
|
elif "q_attn.bias" in key:
|
||||||
|
module._parameters[param_name][: value.shape[0]] = value
|
||||||
|
elif "kv_attn.weight" in key:
|
||||||
|
module._parameters[param_name][
|
||||||
|
model.transformer.head_size * model.transformer.num_heads :
|
||||||
|
] = value
|
||||||
|
elif "kv_attn.bias" in key:
|
||||||
|
module._parameters[param_name][
|
||||||
|
model.transformer.head_size * model.transformer.num_heads :
|
||||||
|
] = value
|
||||||
|
else:
|
||||||
|
if current_parameter_tensor.shape != value.shape:
|
||||||
|
raise ValueError(
|
||||||
|
f"Name {final_key} -- Current {current_parameter_tensor.shape} and got {value.shape}"
|
||||||
|
)
|
||||||
|
module._parameters[param_name] = value
|
||||||
|
else:
|
||||||
|
module._buffers[param_name] = value
|
||||||
|
|
||||||
|
del value
|
||||||
|
|
||||||
|
if model.lm_head.weight.device == torch.device("meta"):
|
||||||
|
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model.post_load_weights(quantize)
|
model.post_load_weights(quantize)
|
||||||
|
|
||||||
|
uninitialized_parameters = []
|
||||||
|
for n, p in model.named_parameters():
|
||||||
|
if p.data.device == torch.device("meta"):
|
||||||
|
uninitialized_parameters.append(n)
|
||||||
|
if uninitialized_parameters:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"found uninitialized parameters in model : {uninitialized_parameters}"
|
||||||
|
)
|
||||||
|
|
||||||
def decode(self, generated_ids: List[int]) -> str:
|
def decode(self, generated_ids: List[int]) -> str:
|
||||||
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
# Do not skip special tokens as they are used for custom parsing rules of the generated text
|
||||||
return self.tokenizer.decode(
|
return self.tokenizer.decode(
|
||||||
|
@ -389,6 +399,8 @@ class FlashSantacoderSharded(FlashSantacoder):
|
||||||
else:
|
else:
|
||||||
module._buffers[param_name] = tensor
|
module._buffers[param_name] = tensor
|
||||||
|
|
||||||
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
if model.lm_head.weight.device == torch.device("meta"):
|
||||||
|
model.lm_head.weight = torch.nn.Parameter(model.transformer.wte.weight)
|
||||||
|
|
||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
model.post_load_weights(quantize)
|
model.post_load_weights(quantize)
|
||||||
|
|
Loading…
Reference in New Issue