# Text Generation The Hugging Face Text Generation Python library provides a convenient way of interfacing with a `text-generation-inference` instance running on [Hugging Face Inference Endpoints](https://huggingface.co/inference-endpoints) or on the Hugging Face Hub. ## Get Started ### Install ```shell pip install text-generation ``` ### Inference API Usage ```python from text_generation import InferenceAPIClient client = InferenceAPIClient("bigscience/bloomz") text = client.generate("Why is the sky blue?").generated_text print(text) # ' Rayleigh scattering' # Token Streaming text = "" for response in client.generate_stream("Why is the sky blue?"): if not response.token.special: text += response.token.text print(text) # ' Rayleigh scattering' ``` or with the asynchronous client: ```python from text_generation import InferenceAPIAsyncClient client = InferenceAPIAsyncClient("bigscience/bloomz") response = await client.generate("Why is the sky blue?") print(response.generated_text) # ' Rayleigh scattering' # Token Streaming text = "" async for response in client.generate_stream("Why is the sky blue?"): if not response.token.special: text += response.token.text print(text) # ' Rayleigh scattering' ``` ### Hugging Fae Inference Endpoint usage ```python from text_generation import Client endpoint_url = "https://YOUR_ENDPOINT.endpoints.huggingface.cloud" client = Client(endpoint_url) text = client.generate("Why is the sky blue?").generated_text print(text) # ' Rayleigh scattering' # Token Streaming text = "" for response in client.generate_stream("Why is the sky blue?"): if not response.token.special: text += response.token.text print(text) # ' Rayleigh scattering' ``` or with the asynchronous client: ```python from text_generation import AsyncClient endpoint_url = "https://YOUR_ENDPOINT.endpoints.huggingface.cloud" client = AsyncClient(endpoint_url) response = await client.generate("Why is the sky blue?") print(response.generated_text) # ' Rayleigh scattering' # Token Streaming text = "" async for response in client.generate_stream("Why is the sky blue?"): if not response.token.special: text += response.token.text print(text) # ' Rayleigh scattering' ``` ### Types ```python # Prompt tokens class PrefillToken: # Token ID from the model tokenizer id: int # Token text text: str # Logprob # Optional since the logprob of the first token cannot be computed logprob: Optional[float] # Generated tokens class Token: # Token ID from the model tokenizer id: int # Token text text: str # Logprob logprob: float # Is the token a special token # Can be used to ignore tokens when concatenating special: bool # Generation finish reason class FinishReason(Enum): # number of generated tokens == `max_new_tokens` Length = "length" # the model generated its end of sequence token EndOfSequenceToken = "eos_token" # the model generated a text included in `stop_sequences` StopSequence = "stop_sequence" # `generate` details class Details: # Generation finish reason finish_reason: FinishReason # Number of generated tokens generated_tokens: int # Sampling seed if sampling was activated seed: Optional[int] # Prompt tokens prefill: List[PrefillToken] # Generated tokens tokens: List[Token] # `generate` return value class Response: # Generated text generated_text: str # Generation details details: Details # `generate_stream` details class StreamDetails: # Generation finish reason finish_reason: FinishReason # Number of generated tokens generated_tokens: int # Sampling seed if sampling was activated seed: Optional[int] # `generate_stream` return value class StreamResponse: # Generated token token: Token # Complete generated text # Only available when the generation is finished generated_text: Optional[str] # Generation details # Only available when the generation is finished details: Optional[StreamDetails] ```