preemo_text-generation-infe.../server/text_generation_server/models/ct2_causal_lm.py

797 lines
29 KiB
Python

# coding=utf-8
# Copyright 2023 Michael Feil.
#
# This code is loosely based on Huggingface text-generation-inference v0.9.3's causal_lm.py implementation.
# While it remains licensed under Apache License, Version 2.0,
# text-generation-inference itself on 7/28/2023 has changed its license.
# This code remains unaffected by this change.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
import os
import multiprocessing
from pathlib import Path
from dataclasses import dataclass
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from opentelemetry import trace
from transformers import (
AutoTokenizer,
AutoConfig,
PreTrainedTokenizerBase
)
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
)
from typing import Optional, Tuple, List, Type, Dict
from text_generation_server.models import Model
from text_generation_server.models.types import (
PrefillTokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
from text_generation_server.utils import Sampling
try:
import ctranslate2
except ImportError:
ctranslate2 = None
tracer = trace.get_tracer(__name__)
@dataclass
class CT2CausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
requests_idx_mapping: Dict[int, int]
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
position_ids: torch.Tensor
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
# Lengths of all generations present in the batch
input_lengths: List[int]
prefix_offsets: List[int]
read_offsets: List[int]
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
# Metadata used for padding
max_input_length: int
padding_right_offset: int
# Maximum number of tokens this batch will grow to
max_tokens: int
# Past metadata
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
) -> "CT2CausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
prefix_offsets = []
read_offsets = []
requests_idx_mapping = {}
# Parse batch
max_truncation = 0
padding_right_offset = 0
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
stopping_criterias.append(stopping_criteria)
max_truncation = max(max_truncation, r.truncate)
max_decode_tokens += stopping_criteria.max_new_tokens
padding_right_offset = max(
padding_right_offset, stopping_criteria.max_new_tokens
)
tokenized_inputs = tokenizer(
inputs,
return_tensors="pt",
padding=True,
return_token_type_ids=False,
truncation=True,
max_length=max_truncation,
).to(device)
for _ in pb.requests:
input_len = tokenized_inputs["input_ids"].shape[1]
prefix_offsets.append(input_len - 5)
read_offsets.append(input_len)
input_lengths = tokenized_inputs["attention_mask"].sum(1)
max_input_length = input_lengths.max()
input_ids = tokenized_inputs["input_ids"]
# Allocate maximum attention_mask
attention_mask = input_ids.new_zeros(
(pb.size, max_input_length + padding_right_offset)
)
# Copy tokenizer attention_mask into fully allocated attention_mask
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths.tolist(),
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length.item(),
padding_right_offset=padding_right_offset,
max_tokens=max_tokens,
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]) -> Optional["CT2CausalLMBatch"]:
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
if len(request_ids) == len(self):
return self
keep_indices = []
# New values after filtering
requests_idx_mapping = {}
requests = []
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
max_input_length = 0
next_token_choosers = []
stopping_criterias = []
total_remaining_decode_tokens = 0
new_padding_right_offset = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
requests_idx_mapping[request_id] = i
keep_indices.append(idx)
requests.append(self.requests[idx])
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
all_input_ids.append(self.all_input_ids[idx])
request_input_length = self.input_lengths[idx]
input_lengths.append(request_input_length)
max_input_length = max(max_input_length, request_input_length)
next_token_choosers.append(self.next_token_choosers[idx])
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
remaining_decode_tokens = (
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
)
total_remaining_decode_tokens += remaining_decode_tokens
new_padding_right_offset = max(
new_padding_right_offset, remaining_decode_tokens
)
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
input_ids = self.input_ids[keep_indices]
position_ids = self.position_ids[keep_indices]
self.attention_mask = self.attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
]
# Ensure that past_key_values tensors can be updated in-place
if type(self.past_key_values[0]) == tuple:
self.past_key_values = [list(layer) for layer in self.past_key_values]
# Update tensors in-place to allow incremental garbage collection
past_kv_length = max_input_length - 1
for layer in self.past_key_values:
past_keys, past_values = layer
if len(past_keys.shape) == 3:
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
if self.keys_head_dim_last:
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
else:
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
del past_keys
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
del past_values
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
self.requests = requests
self.requests_idx_mapping = requests_idx_mapping
self.input_ids = input_ids
self.position_ids = position_ids
self.all_input_ids = all_input_ids
self.input_lengths = input_lengths
self.prefix_offsets = prefix_offsets
self.read_offsets = read_offsets
self.next_token_choosers = next_token_choosers
self.stopping_criterias = stopping_criterias
self.max_input_length = max_input_length
self.padding_right_offset = new_padding_right_offset
self.max_tokens = max_tokens
return self
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["CT2CausalLMBatch"]) -> "CT2CausalLMBatch":
# Used for padding
total_batch_size = 0
max_input_length = 0
padding_right_offset = 0
for batch in batches:
total_batch_size += len(batch)
max_input_length = max(max_input_length, batch.max_input_length)
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
# Batch attributes
requests = []
requests_idx_mapping = {}
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
max_tokens = 0
# Batch tensors
input_ids = None
attention_mask = None
position_ids = None
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + start_index
# Slicing end index for this batch
end_index = start_index + len(batch)
# We only concatenate batches that did at least one step
# if batch.past_key_values is None:
# raise ValueError("only concatenate prefilled batches")
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset),
)
# We need to slice the attention mask to remove padding from previous steps
# and to remove unused allocated space
left_offset = max_input_length - batch.max_input_length
batch_left_offset = (
batch.attention_mask.shape[1]
- batch.max_input_length
- batch.padding_right_offset
)
attention_mask[
start_index:end_index,
left_offset:-padding_right_offset,
] = batch.attention_mask[
:,
batch_left_offset : -batch.padding_right_offset,
]
# Create empty tensor
# position_ids is always of shape [batch_size, 1]
if position_ids is None:
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
position_ids[start_index:end_index] = batch.position_ids
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
# And ensure that we can update tensors in-place
# if type(batch.past_key_values[0]) == tuple:
# batch.past_key_values = [
# [t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
# for layer in batch.past_key_values
# ]
# elif len(batch.past_key_values[0][0].shape) == 3:
# for layer in batch.past_key_values:
# for k, t in enumerate(layer):
# layer[k] = t.view(len(batch), -1, *t.shape[-2:])
# Add eventual padding tokens that were added while concatenating
max_tokens += batch.max_tokens + (
max_input_length - batch.max_input_length
) * len(batch)
start_index = end_index
# first_past_kvs = batches[0].past_key_values
# _, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape
# padded_past_values_shape = (
# total_batch_size,
# num_heads,
# max_input_length - 1,
# head_dim,
# )
# if batches[0].keys_head_dim_last:
# padded_past_keys_shape = padded_past_values_shape
# else:
# # seq_length is last for BLOOM
# padded_past_keys_shape = (
# total_batch_size,
# num_heads,
# head_dim,
# max_input_length - 1,
# )
# Iterate over attention layers
# Concatenate past key values layer by layer to allow incremental garbage collection
# for j in range(len(first_past_kvs)):
# padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
# start_index = 0
# for batch in batches:
# past_keys = batch.past_key_values[j][0]
# # Clear reference to the original tensor
# batch.past_key_values[j][0] = None
# # Slicing end index for this batch
# end_index = start_index + len(batch)
# # We slice the keys to remove the padding from previous batches
# past_seq_len = batch.max_input_length - 1
# if batch.keys_head_dim_last:
# padded_past_keys[
# start_index:end_index, :, -past_seq_len:, :
# ] = past_keys[:, :, -past_seq_len:, :]
# else:
# # BLOOM case
# padded_past_keys[
# start_index:end_index, :, :, -past_seq_len:
# ] = past_keys[:, :, :, -past_seq_len:]
# del past_keys
# start_index = end_index
# padded_past_values = first_past_kvs[j][1].new_zeros(
# padded_past_values_shape
# )
# start_index = 0
# for batch in batches:
# past_values = batch.past_key_values[j][1]
# # Clear reference to the original tensor
# batch.past_key_values[j][1] = None
# # Slicing end index for this batch
# end_index = start_index + len(batch)
# # We slice the past values to remove the padding from previous batches
# past_seq_len = batch.max_input_length - 1
# padded_past_values[
# start_index:end_index, :, -past_seq_len:, :
# ] = past_values[:, :, -past_seq_len:, :]
# del past_values
# # Update values
# start_index = end_index
# past_key_values.append([padded_past_keys, padded_past_values])
return cls(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
all_input_ids=all_input_ids,
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
keys_head_dim_last=batches[0].keys_head_dim_last,
max_tokens=max_tokens,
)
def __len__(self):
return len(self.requests)
class CT2CausalLM(Model):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
if ctranslate2 is None:
raise ValueError(
"for quantization with ct2, the installation requires the pip package ctranslate2. "
"install via `text-generation-server[ct2]` or `pip install ctranslate2` is required.",
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
# Start CT2
ct2_generator_kwargs = {
"inter_threads": int(os.environ.get("TGI_CT2_INTER_THREADS", 1))
}
if torch.cuda.is_available():
self.ct2_device = "cuda"
ct2_generator_kwargs["intra_threads"] = int(
os.environ.get("TGI_CT2_INTRA_THREADS", 1)
)
else:
self.ct2_device = "cpu"
ct2_generator_kwargs["intra_threads"] = int(
os.environ.get(
"TGI_CT2_INTRA_THREADS", multiprocessing.cpu_count() // 2
)
)
if dtype == torch.float16 and self.ct2_device == "cuda":
ct2_compute_type = "float16"
elif dtype == torch.bfloat16 and self.ct2_device == "cuda":
ct2_compute_type = "bfloat16"
elif self.ct2_device == "cpu" and dtype in [torch.float16, torch.bfloat16]:
# float16 is not available on CPU
# and int16 has no stable implementation
ct2_compute_type = "float32"
else:
# default, int8 quantization.
if "cuda" in self.ct2_device:
# int8 for int8 layers, float16 for non-quantized layers
ct2_compute_type = "int8_float16"
else:
# int8 for int8 layers, float32 for non-quantized layers
ct2_compute_type = "int8"
# Start CT2 - conversion
out_dir = (
Path(HUGGINGFACE_HUB_CACHE)
/ "ct2models" / f"{model_id.replace('/','--')}--{ct2_compute_type}"
)
if not os.path.exists(out_dir / "model.bin"):
try:
converter = ctranslate2.converters.TransformersConverter(
model_id,
activation_scales=None,
load_as_float16=ct2_compute_type != "bfloat16",
revision=revision,
low_cpu_mem_usage=True,
trust_remote_code=trust_remote_code,
)
converter.convert(
output_dir=out_dir,
vmap=None,
quantization=ct2_compute_type,
force=True,
)
except Exception as ex:
raise ValueError(
f"conversion with ctranslate2 for {model_id} failed : Error {ex}"
)
if not os.path.exists(out_dir / "model.bin"):
raise ValueError(
f"no ctranslate2 model for {model_id} found after conversion in {out_dir}"
)
# Start CT2
self.ct2_model = ctranslate2.Generator(
str(out_dir),
device=self.ct2_device,
compute_type=ct2_compute_type,
**ct2_generator_kwargs,
)
class DummyModel(torch.nn.Module):
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.config = AutoConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
model = DummyModel()
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
super().__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=torch.int8 if "int8" in ct2_compute_type else torch.float16,
device=torch.device(self.ct2_device),
)
@property
def batch_type(self) -> Type[CT2CausalLMBatch]:
return CT2CausalLMBatch
def decode(self, generated_ids: List[int]) -> str:
return self.tokenizer.decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
def forward_ct2(
self,
all_input_ids,
input_lengths,
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# CT2 forward requires a list of list of input tokens ids and lengths
ids_input = (
torch.nested.to_padded_tensor(
torch.nested.nested_tensor(all_input_ids), 1234567
)
.flatten(1)
.to(torch.int32)
)
# lengths of the padded ids_input, i.e. how often not pad=1234567 is used.
lengths = np.array(input_lengths, dtype=np.int32)
if self.ct2_device == "cuda":
lengths = torch.from_numpy(lengths).to(self.ct2_device)
elif self.ct2_device == "cpu":
ids_input = ids_input.numpy()
ids_input = ctranslate2.StorageView.from_array(ids_input)
lengths = ctranslate2.StorageView.from_array(lengths)
# now, forward through the network
logits = self.ct2_model.forward_batch(ids_input, lengths)
# continue with logits as torch tensor
if self.ct2_device == "cpu":
# logits is a float32 torch cpu tensor
logits = torch.from_numpy(np.asarray(logits))
else:
# logits is a float16 torch cuda tensor
logits = torch.as_tensor(logits, device=self.ct2_device)
return logits, None
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: CT2CausalLMBatch
) -> Tuple[List[Generation], Optional[CT2CausalLMBatch]]:
logits, past = self.forward_ct2(batch.all_input_ids, batch.input_lengths)
# Results
generations: List[Generation] = []
stopped = True
# Zipped iterator
iterator = zip(
batch.requests,
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
logits,
next_token_chooser,
stopping_criteria,
all_input_ids,
) in enumerate(iterator):
# Select next token
next_token_id, logprobs = next_token_chooser(
all_input_ids.view(1, -1), logits[-1:, :]
)
# Append next token to all tokens
all_input_ids = torch.cat([all_input_ids, next_token_id])
new_input_length = input_length + 1
# Generated token
next_token_logprob = logprobs[-1, next_token_id]
next_token_id_squeezed = next_token_id.squeeze()
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids[:, 0], prefix_offset, read_offset
)
# Evaluate stopping criteria
stop, reason = stopping_criteria(
next_token_id_squeezed,
next_token_text,
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[-stopping_criteria.current_tokens :, 0]
)
# Get seed
if isinstance(next_token_chooser.choice, Sampling):
seed = next_token_chooser.choice.seed
else:
seed = None
generated_text = GeneratedText(
output_text, stopping_criteria.current_tokens, reason, seed
)
else:
generated_text = None
# Prefill
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + torch.log_softmax(
logits, -1
).gather(1, all_input_ids[1:]).squeeze(1)[
-new_input_length:-1
].tolist()
prefill_token_ids = all_input_ids[-new_input_length:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(
prefill_token_ids, prefill_logprobs, prefill_texts
)
else:
prefill_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id_squeezed,
next_token_logprob,
next_token_text,
next_token_id_squeezed.item() in self.all_special_ids,
generated_text,
)
generations.append(generation)
# Update values
batch.input_ids[i, 0] = next_token_id
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length
batch.prefix_offsets[i] = prefix_offset
batch.read_offsets[i] = read_offset
batch.max_input_length = max(batch.max_input_length, new_input_length)
# We finished all generations in the batch; there is no next batch
if stopped:
return generations, None
# Slice unused values from prefill
batch.input_ids = batch.input_ids[:, :1]
# Update attention_mask as we added a new token to input_ids
batch.attention_mask[:, -batch.padding_right_offset] = 1
# Decrease right offset
batch.padding_right_offset -= 1
# Update position_ids
batch.position_ids = batch.position_ids[:, -1:] + 1
# Update past key values
batch.past_key_values = past
return generations, batch