preemo_text-generation-infe.../server/text_generation_server/models/custom_modeling/neox_modeling.py

795 lines
30 KiB
Python

# coding=utf-8
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch GPTNeoX model."""
from typing import Optional, Tuple, Union
import os
import torch
import torch.distributed
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.activations import ACT2FN
from transformers.file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers import GPTNeoXConfig
from loguru import logger
from text_generation_server.utils.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
TensorParallelRowLinear,
TensorParallelHead,
)
CUSTOM_KERNELS_ENABLED = False
if not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True":
try:
from custom_kernels import fused_attention_cuda
CUSTOM_KERNELS_ENABLED = True
except ImportError:
pass
if not CUSTOM_KERNELS_ENABLED:
logger.warning("We're not using custom kernels.")
def make_causal_mask(
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
) -> torch.BoolTensor:
"""
Make causal mask used for self-attention.
"""
batch_size, target_length = input_ids_shape
mask = torch.ones(
(target_length, target_length + past_key_values_length),
dtype=torch.bool,
device=device,
)
mask = mask.triu(1 + past_key_values_length)
expanded_mask = mask.unsqueeze(0).expand(
batch_size, target_length, target_length + past_key_values_length
)
return expanded_mask
def expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
"""
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
"""
batch_size, src_length = mask.shape
tgt_length = tgt_length if tgt_length is not None else src_length
expanded_mask = ~(mask[:, None, :].to(torch.bool))
return expanded_mask.expand(batch_size, tgt_length, src_length)
def prepare_attn_mask(
attention_mask: torch.Tensor,
input_shape: Tuple[int, int],
past_key_values_length: int,
) -> torch.BoolTensor:
# create causal mask
# [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
combined_attention_mask = None
device = attention_mask.device
_, src_length = input_shape
if src_length > 1:
combined_attention_mask = make_causal_mask(
input_shape, device=device, past_key_values_length=past_key_values_length
)
# [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
expanded_attn_mask = expand_mask(attention_mask, tgt_length=src_length)
combined_attention_mask = (
expanded_attn_mask
if combined_attention_mask is None
else expanded_attn_mask | combined_attention_mask
)
return combined_attention_mask
class GPTNeoXPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
class GPTNeoXAttention(nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_attention_heads
self.rotary_ndims = int(self.head_size * config.rotary_pct)
max_positions = config.max_position_embeddings
# ??? TODO
# self.register_buffer(
# "bias",
# torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
# 1, 1, max_positions, max_positions
# ),
# )
# self.register_buffer("masked_bias", torch.tensor(-1e9))
self.rotary_emb = RotaryEmbedding(
self.rotary_ndims,
config.max_position_embeddings,
base=config.rotary_emb_base,
)
self.rotary_emb.inv_freq = nn.Parameter(
weights.get_tensor(f"{prefix}.rotary_emb.inv_freq")
)
self.inv_norm_factor = 1.0 / torch.sqrt(
torch.tensor(self.head_size, dtype=torch.float32)
).to(torch.get_default_dtype())
assert self.num_attention_heads % weights.process_group.size() == 0
self.num_attention_heads = (
self.num_attention_heads // weights.process_group.size()
)
self.query_key_value = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.query_key_value", weights=weights, bias=True
)
self.dense = TensorParallelRowLinear.load(
config, prefix=f"{prefix}.dense", weights=weights, bias=True
)
def forward(
self,
hidden_states,
position_ids,
attention_mask,
head_mask=None,
layer_past=None,
use_cache=False,
output_attentions=False,
):
has_layer_past = layer_past is not None
# Compute QKV
# Attention heads [batch, seq_len, hidden_size]
# --> [batch, seq_len, (np * 3 * head_size)]
qkv = self.query_key_value(hidden_states)
# [batch, seq_len, (num_heads * 3 * head_size)]
# --> [batch, seq_len, num_heads, 3 * head_size]
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
qkv = qkv.view(*new_qkv_shape).permute(0, 2, 1, 3)
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
query, key, value = qkv.split(self.head_size, -1)
# Compute token offset for rotary embeddings (when decoding)
seq_len = key.shape[-2]
if has_layer_past:
seq_len += layer_past[0].shape[-2]
# Compute rotary embeddings on rotary_ndims
query_rot = query[..., : self.rotary_ndims]
key_rot = key[..., : self.rotary_ndims]
query_rot, key_rot = self.rotary_emb(query_rot, key_rot, position_ids, seq_len)
query[..., : self.rotary_ndims] = query_rot
key[..., : self.rotary_ndims] = key_rot
if CUSTOM_KERNELS_ENABLED:
attn_output, present, attn_weights = fused_attention_cuda.forward(
query,
key,
value,
layer_past,
attention_mask,
head_mask,
self.inv_norm_factor,
self.num_attention_heads,
use_cache,
)
else:
# Cache QKV values
if has_layer_past:
past_key = layer_past[0]
past_value = layer_past[1]
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
present = (key, value) if use_cache else None
# Compute attention
attn_output, attn_weights = self._attn(
query, key, value, attention_mask, head_mask
)
# Reshape outputs
attn_output = self._merge_heads(
attn_output, self.num_attention_heads, self.head_size
)
attn_output = self.dense(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
@classmethod
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Splits hidden dim into attn_head_size and num_attention_heads
"""
# tensor: [bs, seq_len, hidden_size]
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(new_shape)
# -> [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3)
return tensor
@classmethod
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
"""
Merges attn_head_size dim and num_attn_heads dim into hidden dim
"""
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
tensor = tensor.permute(0, 2, 1, 3).contiguous()
# -> [bs, seq_len, num_attention_heads, attn_head_size]
tensor = tensor.view(
tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size
)
# -> [bs, seq_len, hidden_size]
return tensor
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
# compute causal mask from causal mask buffer
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
key_length = key.size(-2)
query = query.view(
batch_size * num_attention_heads, query_length, attn_head_size
)
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
attn_scores = torch.zeros(
1,
dtype=query.dtype,
device=key.device,
).expand(batch_size * num_attention_heads, query_length, key_length)
attn_scores = torch.baddbmm(
attn_scores,
query,
key.transpose(1, 2),
beta=1.0,
alpha=self.inv_norm_factor,
)
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
input_dtype = attn_scores.dtype
if input_dtype in [torch.float16, torch.bfloat16]:
attn_scores = attn_scores.to(torch.float)
attn_scores = torch.where(
attention_mask, torch.finfo(attn_scores.dtype).min, attn_scores
)
attn_scores = attn_scores.view(
batch_size, num_attention_heads, query_length, key_length
)
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
attn_weights = attn_weights.to(value.dtype)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
class RotaryEmbedding(torch.nn.Module):
def __init__(self, dim, max_position_embeddings, base=10000, device=None):
super().__init__()
self.true_inv_freq = 1.0 / (
base ** (torch.arange(0, dim, 2).float().to(device) / dim)
)
self.register_buffer("inv_freq", self.true_inv_freq)
# Build here to make `torch.jit.trace` work.
self.max_seq_len_cached = max_position_embeddings
self.cos_cached = None
self.sin_cached = None
@staticmethod
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
@staticmethod
def _create_cos_sin(inv_freq, max_position_embeddings, dtype, device):
t = torch.arange(
max_position_embeddings, device=inv_freq.device, dtype=inv_freq.dtype
)
freqs = torch.einsum("i,j->ij", t, inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
return emb.cos().to(device).to(dtype), emb.sin().to(device).to(dtype)
def forward(self, q, k, position_ids, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if (
seq_len > self.max_seq_len_cached
or self.cos_cached is None
or self.sin_cached is None
):
if seq_len > self.max_seq_len_cached:
self.max_seq_len_cached = seq_len
self.cos_cached, self.sin_cached = self._create_cos_sin(
self.true_inv_freq, self.max_seq_len_cached, q.dtype, q.device
)
return rotary_forward(q, k, self.cos_cached, self.sin_cached, position_ids)
@torch.jit.script
def rotary_forward(q, k, cos, sin, position_ids):
cos = cos[position_ids].unsqueeze(1)
sin = sin[position_ids].unsqueeze(1)
chunk_size = q.shape[-1] // 2
q1, q2 = q.split(chunk_size, -1)
q_rotated = torch.cat((-q2, q1), dim=-1)
k1, k2 = k.split(chunk_size, -1)
k_rotated = torch.cat((-k2, k1), dim=-1)
q_embed = (q * cos) + (q_rotated * sin)
k_embed = (k * cos) + (k_rotated * sin)
return q_embed, k_embed
class GPTNeoXMLP(nn.Module):
def __init__(self, config, prefix, weights):
super().__init__()
self.act = (
ACT2FN[config.hidden_act]
if "gelu_fast" not in config.hidden_act
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
)
self.dense_h_to_4h = TensorParallelColumnLinear.load(
config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True
)
self.dense_4h_to_h = TensorParallelRowLinear.load(
config, prefix=f"{prefix}.dense_4h_to_h", weights=weights, bias=True
)
def forward(self, hidden_states):
hidden_states = self.dense_h_to_4h(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dense_4h_to_h(hidden_states)
return hidden_states
class GPTNeoXLayer(nn.Module):
def __init__(self, layer_id, config, weights):
super().__init__()
self.use_parallel_residual = config.use_parallel_residual
self.input_layernorm = nn.LayerNorm.load(
prefix=f"gpt_neox.layers.{layer_id}.input_layernorm",
weights=weights,
eps=config.layer_norm_eps,
)
self.post_attention_layernorm = nn.LayerNorm.load(
prefix=f"gpt_neox.layers.{layer_id}.post_attention_layernorm",
weights=weights,
eps=config.layer_norm_eps,
)
self.attention = GPTNeoXAttention(
config, prefix=f"gpt_neox.layers.{layer_id}.attention", weights=weights
)
self.mlp = GPTNeoXMLP(
config, prefix=f"gpt_neox.layers.{layer_id}.mlp", weights=weights
)
def forward(
self,
hidden_states,
position_ids,
attention_mask=None,
head_mask=None,
use_cache=False,
layer_past=None,
output_attentions=False,
):
attention_layer_outputs = self.attention(
self.input_layernorm(hidden_states),
attention_mask=attention_mask,
position_ids=position_ids,
layer_past=layer_past,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attention_layer_outputs[
0
] # output_attn: attn_output, present, (attn_weights)
outputs = attention_layer_outputs[1:]
if self.use_parallel_residual:
# pseudocode:
# x = x + attn(ln1(x)) + mlp(ln2(x))
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
hidden_states = mlp_output + attn_output + hidden_states
else:
# pseudocode:
# x = x + attn(ln1(x))
# x = x + mlp(ln2(x))
attn_output = attn_output + hidden_states
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
hidden_states = mlp_output + attn_output
if use_cache:
outputs = (
hidden_states,
) + outputs # hidden_states, present, (attn_weights)
else:
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
return outputs
class GPTNeoXModel(GPTNeoXPreTrainedModel):
def __init__(self, config, weights):
super().__init__(config)
self.config = config
self.num_attention_heads = config.num_attention_heads
self.embed_in = TensorParallelEmbedding(
prefix="gpt_neox.embed_in", weights=weights
)
self.layers = nn.ModuleList(
[
GPTNeoXLayer(layer_id, config, weights)
for layer_id in range(config.num_hidden_layers)
]
)
self.final_layer_norm = nn.LayerNorm.load(
prefix="gpt_neox.final_layer_norm",
weights=weights,
eps=config.layer_norm_eps,
)
self.tp_world_size = weights.process_group.size()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids=None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * self.config.num_hidden_layers)
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_length, seq_length + past_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
else:
position_ids = position_ids.view(-1, seq_length).long()
if inputs_embeds is None:
inputs_embeds = self.embed_in(input_ids)
hidden_states = inputs_embeds
# Attention mask.
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values[0] is not None:
past_key_values_length = past_key_values[0][0].shape[-1]
seq_length_with_past = seq_length_with_past + past_key_values_length
if attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), device=hidden_states.device
)
else:
attention_mask = attention_mask.to(hidden_states.device)
causal_mask = prepare_attn_mask(
attention_mask,
input_shape=(batch_size, seq_length),
past_key_values_length=past_key_values_length,
)
assert self.num_attention_heads % self.tp_world_size == 0
block_size = self.num_attention_heads // self.tp_world_size
causal_mask = torch.repeat_interleave(causal_mask, block_size, dim=0)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
presents = () if use_cache else None
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
outputs = layer(
hidden_states,
position_ids=position_ids,
attention_mask=causal_mask,
head_mask=head_mask[i],
layer_past=layer_past,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
hidden_states = self.final_layer_norm(hidden_states)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_attentions]
if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_attentions,
)
class GPTNeoxForCausalLM(GPTNeoXPreTrainedModel):
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
def __init__(self, config, weights):
super().__init__(config)
self.gpt_neox = GPTNeoXModel(config, weights)
self.embed_out = TensorParallelHead.load(
config, prefix="embed_out", weights=weights
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
`past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
>>> config.is_decoder = True
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.gpt_neox(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
lm_loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# we are doing next-token prediction; shift prediction scores and input ids by one
shift_logits = lm_logits[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)
)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
input_shape = input_ids.shape
# cut decoder_input_ids if past is used
if past_key_values and past_key_values[0] is not None:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"position_ids": position_ids,
}
)
return model_inputs
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(
past_state.index_select(0, beam_idx)
for past_state in layer_past[:2]
)
+ layer_past[2:],
)
return reordered_past