docs: add comments and update README.md

This commit is contained in:
Yujia Qiao 2021-12-18 16:23:20 +08:00
parent b6c353e7bf
commit 347b958e84
No known key found for this signature in database
GPG Key ID: DC129173B148701B
5 changed files with 112 additions and 26 deletions

View File

@ -3,7 +3,7 @@
A fast and stable reverse proxy for NAT traversal, written in Rust A fast and stable reverse proxy for NAT traversal, written in Rust
rathole, like frp, can help to expose the service on the device behind the NAT to the Internet, via a server with a public IP. rathole, like [frp](https://github.com/fatedier/frp), can help to expose the service on the device behind the NAT to the Internet, via a server with a public IP.
## Quickstart ## Quickstart
@ -62,7 +62,7 @@ remote_addr = "example.com:2333" # Necessary. The address of the server
default_token = "default_token_if_not_specify" # Optional. The default token of services, if they don't define their own ones default_token = "default_token_if_not_specify" # Optional. The default token of services, if they don't define their own ones
[client.transport] [client.transport]
type = "tcp" # Necessary if multiple transport blocks present. Possibile values: ["tcp", "tls"]. Default: "tcp" type = "tcp" # Optional. Possibile values: ["tcp", "tls"]. Default: "tcp"
[client.transport.tls] # Necessary if `type` is "tls" [client.transport.tls] # Necessary if `type` is "tls"
trusted_root = "ca.pem" # Necessary. The certificate of CA that signed the server's certificate trusted_root = "ca.pem" # Necessary. The certificate of CA that signed the server's certificate
hostname = "example.com" # Optional. The hostname that the client uses to validate the certificate. If not set, fallback to `client.remote_addr` hostname = "example.com" # Optional. The hostname that the client uses to validate the certificate. If not set, fallback to `client.remote_addr`
@ -80,7 +80,7 @@ default_token = "default_token_if_not_specify" # Optional
[server.transport] [server.transport]
type = "tcp" # Same as `[client.transport]` type = "tcp" # Same as `[client.transport]`
[server.transport.tls] [server.transport.tls] # Necessary if `type` is "tls"
pkcs12 = "identify.pfx" # Necessary. pkcs12 file of server's certificate and private key pkcs12 = "identify.pfx" # Necessary. pkcs12 file of server's certificate and private key
pkcs12_password = "password" # Necessary. Password of the pkcs12 file pkcs12_password = "password" # Necessary. Password of the pkcs12 file
@ -92,9 +92,9 @@ bind_addr = "0.0.0.0:8081" # Necessary. The address of the service is exposed at
bind_addr = "0.0.0.1:8082" bind_addr = "0.0.0.1:8082"
``` ```
# Benchmark ## Benchmark
rathole has similiar latency to frp, but can handle more connections. Also it can provide much better bandwidth than frp. rathole has similiar latency to [frp](https://github.com/fatedier/frp), but can handle more connections. Also it can provide much better bandwidth than frp.
See also [Benchmark](./doc/benchmark.md). See also [Benchmark](./doc/benchmark.md).
@ -102,10 +102,10 @@ See also [Benchmark](./doc/benchmark.md).
![tcp_latency](./doc/img/tcp_latency.svg) ![tcp_latency](./doc/img/tcp_latency.svg)
# Development ## Development Status
`rathole` is in active development. A load of features is on the way: `rathole` is in active development. A load of features is on the way:
- [x] TLS support
- [ ] UDP support - [ ] UDP support
- [ ] Hot reloading - [ ] Hot reloading
- [ ] HTTP APIs for configuration - [ ] HTTP APIs for configuration

View File

@ -17,6 +17,7 @@ use tokio::sync::oneshot;
use tokio::time::{self, Duration}; use tokio::time::{self, Duration};
use tracing::{debug, error, info, instrument, Instrument, Span}; use tracing::{debug, error, info, instrument, Instrument, Span};
// The entrypoint of running a client
pub async fn run_client(config: &Config) -> Result<()> { pub async fn run_client(config: &Config) -> Result<()> {
let config = match &config.client { let config = match &config.client {
Some(v) => v, Some(v) => v,
@ -40,6 +41,7 @@ pub async fn run_client(config: &Config) -> Result<()> {
type ServiceDigest = protocol::Digest; type ServiceDigest = protocol::Digest;
type Nonce = protocol::Digest; type Nonce = protocol::Digest;
// Holds the state of a client
struct Client<'a, T: Transport> { struct Client<'a, T: Transport> {
config: &'a ClientConfig, config: &'a ClientConfig,
service_handles: HashMap<String, ControlChannelHandle>, service_handles: HashMap<String, ControlChannelHandle>,
@ -47,6 +49,7 @@ struct Client<'a, T: Transport> {
} }
impl<'a, T: 'static + Transport> Client<'a, T> { impl<'a, T: 'static + Transport> Client<'a, T> {
// Create a Client from `[client]` config block
async fn from(config: &'a ClientConfig) -> Result<Client<'a, T>> { async fn from(config: &'a ClientConfig) -> Result<Client<'a, T>> {
Ok(Client { Ok(Client {
config, config,
@ -55,8 +58,10 @@ impl<'a, T: 'static + Transport> Client<'a, T> {
}) })
} }
// The entrypoint of Client
async fn run(&mut self) -> Result<()> { async fn run(&mut self) -> Result<()> {
for (name, config) in &self.config.services { for (name, config) in &self.config.services {
// Create a control channel for each service defined
let handle = ControlChannelHandle::new( let handle = ControlChannelHandle::new(
(*config).clone(), (*config).clone(),
self.config.remote_addr.clone(), self.config.remote_addr.clone(),
@ -65,6 +70,8 @@ impl<'a, T: 'static + Transport> Client<'a, T> {
self.service_handles.insert(name.clone(), handle); self.service_handles.insert(name.clone(), handle);
} }
// TODO: Maybe wait for a config change signal for hot reloading
// Wait for the shutdown signal
loop { loop {
tokio::select! { tokio::select! {
val = tokio::signal::ctrl_c() => { val = tokio::signal::ctrl_c() => {
@ -130,14 +137,17 @@ async fn run_data_channel<T: Transport>(args: Arc<RunDataChannelArgs<T>>) -> Res
Ok(()) Ok(())
} }
// Control channel, using T as the transport layer
struct ControlChannel<T: Transport> { struct ControlChannel<T: Transport> {
digest: ServiceDigest, digest: ServiceDigest, // SHA256 of the service name
service: ClientServiceConfig, service: ClientServiceConfig, // `[client.services.foo]` config block
shutdown_rx: oneshot::Receiver<u8>, shutdown_rx: oneshot::Receiver<u8>, // Receives the shutdown signal
remote_addr: String, remote_addr: String, // `client.remote_addr`
transport: Arc<T>, transport: Arc<T>, // Wrapper around the transport layer
} }
// Handle of a control channel
// Dropping it will also drop the actual control channel
struct ControlChannelHandle { struct ControlChannelHandle {
shutdown_tx: oneshot::Sender<u8>, shutdown_tx: oneshot::Sender<u8>,
} }

View File

@ -6,6 +6,9 @@ struct RawItem<K1, K2, V>(*mut (K1, K2, V));
unsafe impl<K1, K2, V> Send for RawItem<K1, K2, V> {} unsafe impl<K1, K2, V> Send for RawItem<K1, K2, V> {}
unsafe impl<K1, K2, V> Sync for RawItem<K1, K2, V> {} unsafe impl<K1, K2, V> Sync for RawItem<K1, K2, V> {}
/// MultiMap is a hash map that can index an item by two keys
/// For example, after an item with key (a, b) is insert, `map.get1(a)` and
/// `map.get2(b)` both returns the item. Likewise the `remove1` and `remove2`.
pub struct MultiMap<K1, K2, V> { pub struct MultiMap<K1, K2, V> {
map1: HashMap<Key<K1>, RawItem<K1, K2, V>>, map1: HashMap<Key<K1>, RawItem<K1, K2, V>>,
map2: HashMap<Key<K2>, RawItem<K1, K2, V>>, map2: HashMap<Key<K2>, RawItem<K1, K2, V>>,

View File

@ -19,12 +19,13 @@ use tokio::sync::{mpsc, oneshot, RwLock};
use tokio::time; use tokio::time;
use tracing::{debug, error, info, info_span, warn, Instrument}; use tracing::{debug, error, info, info_span, warn, Instrument};
type ServiceDigest = protocol::Digest; type ServiceDigest = protocol::Digest; // SHA256 of a service name
type Nonce = protocol::Digest; type Nonce = protocol::Digest; // Also called `session_key`
const POOL_SIZE: usize = 64; const POOL_SIZE: usize = 64; // The number of cached connections
const CHAN_SIZE: usize = 2048; const CHAN_SIZE: usize = 2048; // The capacity of various chans
// The entrypoint of running a server
pub async fn run_server(config: &Config) -> Result<()> { pub async fn run_server(config: &Config) -> Result<()> {
let config = match &config.server { let config = match &config.server {
Some(config) => config, Some(config) => config,
@ -32,6 +33,8 @@ pub async fn run_server(config: &Config) -> Result<()> {
return Err(anyhow!("Try to run as a server, but the configuration is missing. Please add the `[server]` block")) return Err(anyhow!("Try to run as a server, but the configuration is missing. Please add the `[server]` block"))
} }
}; };
//TODO: Maybe use a Box<dyn trait> here to reduce duplicated code
match config.transport.transport_type { match config.transport.transport_type {
TransportType::Tcp => { TransportType::Tcp => {
let mut server = Server::<TcpTransport>::from(config).await?; let mut server = Server::<TcpTransport>::from(config).await?;
@ -42,17 +45,30 @@ pub async fn run_server(config: &Config) -> Result<()> {
server.run().await?; server.run().await?;
} }
} }
Ok(()) Ok(())
} }
// A hash map of ControlChannelHandles, indexed by ServiceDigest or Nonce
// See also MultiMap
type ControlChannelMap<T> = MultiMap<ServiceDigest, Nonce, ControlChannelHandle<T>>; type ControlChannelMap<T> = MultiMap<ServiceDigest, Nonce, ControlChannelHandle<T>>;
// Server holds all states of running a server
struct Server<'a, T: Transport> { struct Server<'a, T: Transport> {
// `[server]` config
config: &'a ServerConfig, config: &'a ServerConfig,
// TODO: Maybe the rwlock is unnecessary.
// Keep it until the hot reloading feature is implemented
// `[server.services]` config, indexed by ServiceDigest
services: Arc<RwLock<HashMap<ServiceDigest, ServerServiceConfig>>>, services: Arc<RwLock<HashMap<ServiceDigest, ServerServiceConfig>>>,
// Collection of contorl channels
control_channels: Arc<RwLock<ControlChannelMap<T>>>, control_channels: Arc<RwLock<ControlChannelMap<T>>>,
// Wrapper around the transport layer
transport: Arc<T>, transport: Arc<T>,
} }
// Generate a hash map of services which is indexed by ServiceDigest
fn generate_service_hashmap( fn generate_service_hashmap(
server_config: &ServerConfig, server_config: &ServerConfig,
) -> HashMap<ServiceDigest, ServerServiceConfig> { ) -> HashMap<ServiceDigest, ServerServiceConfig> {
@ -64,6 +80,7 @@ fn generate_service_hashmap(
} }
impl<'a, T: 'static + Transport> Server<'a, T> { impl<'a, T: 'static + Transport> Server<'a, T> {
// Create a server from `[server]`
pub async fn from(config: &'a ServerConfig) -> Result<Server<'a, T>> { pub async fn from(config: &'a ServerConfig) -> Result<Server<'a, T>> {
Ok(Server { Ok(Server {
config, config,
@ -73,7 +90,9 @@ impl<'a, T: 'static + Transport> Server<'a, T> {
}) })
} }
// The entry point of Server
pub async fn run(&mut self) -> Result<()> { pub async fn run(&mut self) -> Result<()> {
// Listen at `server.bind_addr`
let l = self let l = self
.transport .transport
.bind(&self.config.bind_addr) .bind(&self.config.bind_addr)
@ -88,14 +107,17 @@ impl<'a, T: 'static + Transport> Server<'a, T> {
..Default::default() ..Default::default()
}; };
// Listen for incoming control or data channels // Wait for connections and shutdown signals
loop { loop {
tokio::select! { tokio::select! {
// Wait for incoming control and data channels
ret = self.transport.accept(&l) => { ret = self.transport.accept(&l) => {
match ret { match ret {
Err(err) => { Err(err) => {
// Detects whether it's an IO error
if let Some(err) = err.downcast_ref::<io::Error>() { if let Some(err) = err.downcast_ref::<io::Error>() {
// Possibly a EMFILE. So sleep for a while and retry // If it is an IO error, then it's possibly an
// EMFILE. So sleep for a while and retry
if let Some(d) = backoff.next_backoff() { if let Some(d) = backoff.next_backoff() {
error!("Failed to accept: {}. Retry in {:?}...", err, d); error!("Failed to accept: {}. Retry in {:?}...", err, d);
time::sleep(d).await; time::sleep(d).await;
@ -105,6 +127,8 @@ impl<'a, T: 'static + Transport> Server<'a, T> {
break; break;
} }
} }
// If it's not an IO error, then it comes from
// the transport layer, so just ignore it
} }
Ok((conn, addr)) => { Ok((conn, addr)) => {
backoff.reset(); backoff.reset();
@ -120,6 +144,7 @@ impl<'a, T: 'static + Transport> Server<'a, T> {
} }
} }
}, },
// Wait for the shutdown signal
_ = tokio::signal::ctrl_c() => { _ = tokio::signal::ctrl_c() => {
info!("Shuting down gracefully..."); info!("Shuting down gracefully...");
break; break;
@ -131,6 +156,7 @@ impl<'a, T: 'static + Transport> Server<'a, T> {
} }
} }
// Handle connections to `server.bind_addr`
async fn handle_connection<T: 'static + Transport>( async fn handle_connection<T: 'static + Transport>(
mut conn: T::Stream, mut conn: T::Stream,
addr: SocketAddr, addr: SocketAddr,
@ -203,8 +229,16 @@ async fn do_control_channel_handshake<T: 'static + Transport>(
); );
bail!("Service {} failed the authentication", service_name); bail!("Service {} failed the authentication", service_name);
} else { } else {
// TODO: Here could use some refactor:
// 1. Clone the config and drop `services_guard` earlier
// 2. Use the result of `insert` to warn. Then no need to call `remove1`
let mut h = control_channels.write().await; let mut h = control_channels.write().await;
// If there's already a control channel for the service, then drop the old one.
// Because a control channel doesn't report back when it's dead,
// the handle in the map could be stall, dropping the old handle enables
// the client to reconnect.
if let Some(_) = h.remove1(&service_digest) { if let Some(_) = h.remove1(&service_digest) {
warn!( warn!(
"Dropping previous control channel for digest {}", "Dropping previous control channel for digest {}",
@ -213,6 +247,8 @@ async fn do_control_channel_handshake<T: 'static + Transport>(
} }
let service_config = service_config.clone(); let service_config = service_config.clone();
// Drop the rwlock as soon as possible when we're done with it
drop(services_guard); drop(services_guard);
// Send ack // Send ack
@ -222,7 +258,7 @@ async fn do_control_channel_handshake<T: 'static + Transport>(
info!(service = %service_config.name, "Control channel established"); info!(service = %service_config.name, "Control channel established");
let handle = ControlChannelHandle::new(conn, service_config); let handle = ControlChannelHandle::new(conn, service_config);
// Drop the old handle // Insert the new handle
let _ = h.insert(service_digest, session_key, handle); let _ = h.insert(service_digest, session_key, handle);
} }
@ -242,38 +278,55 @@ async fn do_data_channel_handshake<T: Transport>(
c_ch.conn_pool.data_ch_tx.send(conn).await?; c_ch.conn_pool.data_ch_tx.send(conn).await?;
} }
None => { None => {
// TODO: Maybe print IP here
warn!("Data channel has incorrect nonce"); warn!("Data channel has incorrect nonce");
} }
} }
Ok(()) Ok(())
} }
// Control channel, using T as the transport layer
struct ControlChannel<T: Transport> { struct ControlChannel<T: Transport> {
conn: T::Stream, conn: T::Stream, // The connection of control channel
service: ServerServiceConfig, service: ServerServiceConfig, // A copy of the corresponding service config
shutdown_rx: oneshot::Receiver<bool>, shutdown_rx: oneshot::Receiver<bool>, // Receives the shutdown signal
visitor_tx: mpsc::Sender<TcpStream>, visitor_tx: mpsc::Sender<TcpStream>, // Receives visitor connections
} }
// The handle of a control channel, along with the handle of a connection pool
// Dropping it will drop the actual control channel, because `visitor_tx`
// and `shutdown_tx` are closed
struct ControlChannelHandle<T: Transport> { struct ControlChannelHandle<T: Transport> {
// Shutdown the control channel.
// Not used for now, but can be used for hot reloading
_shutdown_tx: oneshot::Sender<bool>, _shutdown_tx: oneshot::Sender<bool>,
conn_pool: ConnectionPoolHandle<T>, conn_pool: ConnectionPoolHandle<T>,
} }
impl<T: 'static + Transport> ControlChannelHandle<T> { impl<T: 'static + Transport> ControlChannelHandle<T> {
// Create a control channel handle, where the control channel handling task
// and the connection pool task are created.
fn new(conn: T::Stream, service: ServerServiceConfig) -> ControlChannelHandle<T> { fn new(conn: T::Stream, service: ServerServiceConfig) -> ControlChannelHandle<T> {
let (_shutdown_tx, shutdown_rx) = oneshot::channel::<bool>(); // Save the name string for logging
let name = service.name.clone(); let name = service.name.clone();
// Create a shutdown channel. The sender is not used for now, but for future use
let (_shutdown_tx, shutdown_rx) = oneshot::channel::<bool>();
// Create and run the connection pool, where the visitors and data channels meet
let conn_pool = ConnectionPoolHandle::new(); let conn_pool = ConnectionPoolHandle::new();
let actor: ControlChannel<T> = ControlChannel {
// Create the control channel
let ch: ControlChannel<T> = ControlChannel {
conn, conn,
shutdown_rx, shutdown_rx,
service, service,
visitor_tx: conn_pool.visitor_tx.clone(), visitor_tx: conn_pool.visitor_tx.clone(),
}; };
// Run the control channel
tokio::spawn(async move { tokio::spawn(async move {
if let Err(err) = actor.run().await { if let Err(err) = ch.run().await {
error!(%name, "{}", err); error!(%name, "{}", err);
} }
}); });
@ -286,8 +339,10 @@ impl<T: 'static + Transport> ControlChannelHandle<T> {
} }
impl<T: Transport> ControlChannel<T> { impl<T: Transport> ControlChannel<T> {
// Run a control channel
#[tracing::instrument(skip(self), fields(service = %self.service.name))] #[tracing::instrument(skip(self), fields(service = %self.service.name))]
async fn run(mut self) -> Result<()> { async fn run(mut self) -> Result<()> {
// Where the service is exposed
let l = match TcpListener::bind(&self.service.bind_addr).await { let l = match TcpListener::bind(&self.service.bind_addr).await {
Ok(v) => v, Ok(v) => v,
Err(e) => { Err(e) => {
@ -303,7 +358,11 @@ impl<T: Transport> ControlChannel<T> {
info!("Listening at {}", &self.service.bind_addr); info!("Listening at {}", &self.service.bind_addr);
// Each `u8` in the chan indicates a data channel creation request
let (data_req_tx, mut data_req_rx) = mpsc::unbounded_channel::<u8>(); let (data_req_tx, mut data_req_rx) = mpsc::unbounded_channel::<u8>();
// The control channel is moved into the task, and sends CreateDataChannel
// comamnds to the client when needed
tokio::spawn(async move { tokio::spawn(async move {
let cmd = bincode::serialize(&ControlChannelCmd::CreateDataChannel).unwrap(); let cmd = bincode::serialize(&ControlChannelCmd::CreateDataChannel).unwrap();
while data_req_rx.recv().await.is_some() { while data_req_rx.recv().await.is_some() {
@ -313,32 +372,43 @@ impl<T: Transport> ControlChannel<T> {
} }
}); });
// Cache some data channels for later use
for _i in 0..POOL_SIZE { for _i in 0..POOL_SIZE {
if let Err(e) = data_req_tx.send(0) { if let Err(e) = data_req_tx.send(0) {
error!("Failed to request data channel {}", e); error!("Failed to request data channel {}", e);
}; };
} }
// Retry at least every 1s
let mut backoff = ExponentialBackoff { let mut backoff = ExponentialBackoff {
max_interval: Duration::from_secs(1), max_interval: Duration::from_secs(1),
max_elapsed_time: None, max_elapsed_time: None,
..Default::default() ..Default::default()
}; };
// Wait for visitors and the shutdown signal
loop { loop {
tokio::select! { tokio::select! {
// Wait for visitors
val = l.accept() => { val = l.accept() => {
match val { match val {
Err(e) => { Err(e) => {
// `l` is a TCP listener so this must be a IO error
// Possibly a EMFILE. So sleep for a while
error!("{}. Sleep for a while", e); error!("{}. Sleep for a while", e);
if let Some(d) = backoff.next_backoff() { if let Some(d) = backoff.next_backoff() {
time::sleep(d).await; time::sleep(d).await;
} else { } else {
// This branch will never be reached for current backoff policy
error!("Too many retries. Aborting..."); error!("Too many retries. Aborting...");
break; break;
} }
}, },
Ok((incoming, addr)) => { Ok((incoming, addr)) => {
// For every visitor, request to create a data channel
if let Err(e) = data_req_tx.send(0) { if let Err(e) = data_req_tx.send(0) {
// An error indicates the control channel is broken
// So break the loop
error!("{}", e); error!("{}", e);
break; break;
}; };
@ -347,10 +417,12 @@ impl<T: Transport> ControlChannel<T> {
debug!("New visitor from {}", addr); debug!("New visitor from {}", addr);
// Send the visitor to the connection pool
let _ = self.visitor_tx.send(incoming).await; let _ = self.visitor_tx.send(incoming).await;
} }
} }
}, },
// Wait for the shutdown signal
_ = &mut self.shutdown_rx => { _ = &mut self.shutdown_rx => {
break; break;
} }

View File

@ -6,6 +6,7 @@ use std::net::SocketAddr;
use tokio::io::{AsyncRead, AsyncWrite}; use tokio::io::{AsyncRead, AsyncWrite};
use tokio::net::ToSocketAddrs; use tokio::net::ToSocketAddrs;
// Specify a transport layer, like TCP, TLS
#[async_trait] #[async_trait]
pub trait Transport: Debug + Send + Sync { pub trait Transport: Debug + Send + Sync {
type Acceptor: Send + Sync; type Acceptor: Send + Sync;