riffusion-inference/riffusion/spectrogram_image_converter.py

92 lines
2.9 KiB
Python
Raw Normal View History

import numpy as np
import pydub
from PIL import Image
from riffusion.spectrogram_converter import SpectrogramConverter
from riffusion.spectrogram_params import SpectrogramParams
from riffusion.util import image_util
class SpectrogramImageConverter:
"""
Convert between spectrogram images and audio segments.
This is a wrapper around SpectrogramConverter that additionally converts from spectrograms
to images and back. The real audio processing lives in SpectrogramConverter.
"""
def __init__(self, params: SpectrogramParams, device: str = "cuda"):
self.p = params
self.device = device
self.converter = SpectrogramConverter(params=params, device=device)
def spectrogram_image_from_audio(
self,
segment: pydub.AudioSegment,
) -> Image.Image:
"""
Compute a spectrogram image from an audio segment.
Args:
segment: Audio segment to convert
Returns:
Spectrogram image (in pillow format)
"""
assert int(segment.frame_rate) == self.p.sample_rate, "Sample rate mismatch"
if self.p.stereo:
if segment.channels == 1:
print("WARNING: Mono audio but stereo=True, cloning channel")
segment = segment.set_channels(2)
elif segment.channels > 2:
print("WARNING: Multi channel audio, reducing to stereo")
segment = segment.set_channels(2)
else:
if segment.channels > 1:
print("WARNING: Stereo audio but stereo=False, setting to mono")
segment = segment.set_channels(1)
spectrogram = self.converter.spectrogram_from_audio(segment)
image = image_util.image_from_spectrogram(
spectrogram,
power=self.p.power_for_image,
)
# Store conversion params in exif metadata of the image
exif_data = self.p.to_exif()
exif_data[SpectrogramParams.ExifTags.MAX_VALUE.value] = float(np.max(spectrogram))
exif = image.getexif()
exif.update(exif_data.items())
return image
def audio_from_spectrogram_image(
self,
image: Image.Image,
apply_filters: bool = True,
max_value: float = 30e6,
) -> pydub.AudioSegment:
"""
Reconstruct an audio segment from a spectrogram image.
Args:
image: Spectrogram image (in pillow format)
apply_filters: Apply post-processing to improve the reconstructed audio
max_value: Scaled max amplitude of the spectrogram. Shouldn't matter.
"""
spectrogram = image_util.spectrogram_from_image(
image,
max_value=max_value,
power=self.p.power_for_image,
stereo=self.p.stereo,
)
segment = self.converter.audio_from_spectrogram(
spectrogram,
apply_filters=apply_filters,
)
return segment