riffusion-inference/README.md

58 lines
1.5 KiB
Markdown
Raw Normal View History

2022-11-25 17:32:38 -07:00
# Riffusion
2022-11-25 14:20:30 -07:00
2022-11-25 17:32:38 -07:00
Python backend for the Riffusion app that does the model inference and audio processing.
2022-11-25 17:30:11 -07:00
* a diffusers pipeline that performs prompt interpolation combined with image conditioning
* a module for (approximately) converting between spectrograms and waveforms
* a flask server to provide model inference via API to the next.js app
2022-11-25 17:48:10 -07:00
The web app lives at https://github.com/hmartiro/riffusion-app
2022-11-25 17:30:11 -07:00
## Install
Tested with Python 3.9 and diffusers 0.9.0
```
conda create --name riffusion-inference python=3.9
conda activate riffusion-inference
python -m pip install -r requirements.txt
```
## Run
Start the Flask server:
```
python -m riffusion.server --port 3013 --host 127.0.0.1 --checkpoint /path/to/diffusers_checkpoint
```
The model endpoint is now available at `http://127.0.0.1:3013/run_inference` via POST request.
Example input (see [InferenceInput](https://github.com/hmartiro/riffusion-inference/blob/main/riffusion/datatypes.py#L28) for the API):
```
{
alpha: 0.75,
num_inference_steps: 50,
2022-11-25 23:48:52 -07:00
seed_image_id: "og_beat",
2022-11-25 17:30:11 -07:00
start: {
prompt: "church bells on sunday",
seed: 42,
denoising: 0.75,
guidance: 7.0,
},
end: {
prompt: "jazz with piano",
seed: 123,
denoising: 0.75,
guidance: 7.0,
},
}
```
Example output (see [InferenceOutput](https://github.com/hmartiro/riffusion-inference/blob/main/riffusion/datatypes.py#L54) for the API):
```
{
image: "< base64 encoded PNG >",
audio: "< base64 encoded MP3 clip >",,
}
```