405 lines
13 KiB
Python
405 lines
13 KiB
Python
|
import io
|
||
|
import typing as T
|
||
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import pydub
|
||
|
import streamlit as st
|
||
|
from PIL import Image
|
||
|
|
||
|
from riffusion.datatypes import InferenceInput, PromptInput
|
||
|
from riffusion.spectrogram_params import SpectrogramParams
|
||
|
from riffusion.streamlit import util as streamlit_util
|
||
|
from riffusion.streamlit.pages.interpolation import get_prompt_inputs, run_interpolation
|
||
|
from riffusion.util import audio_util
|
||
|
|
||
|
|
||
|
def render_audio_to_audio() -> None:
|
||
|
st.set_page_config(layout="wide", page_icon="🎸")
|
||
|
|
||
|
st.subheader(":wave: Audio to Audio")
|
||
|
st.write(
|
||
|
"""
|
||
|
Modify existing audio from a text prompt or interpolate between two.
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
with st.expander("Help", False):
|
||
|
st.write(
|
||
|
"""
|
||
|
This tool allows you to upload an audio file of arbitrary length and modify it with
|
||
|
a text prompt. It does this by sweeping over the audio in overlapping clips, doing
|
||
|
img2img style transfer with riffusion, then stitching the clips back together with
|
||
|
cross fading to eliminate seams.
|
||
|
|
||
|
Try a denoising strength of 0.4 for light modification and 0.55 for more heavy
|
||
|
modification. The best specific denoising depends on how different the prompt is
|
||
|
from the source audio. You can play with the seed to get infinite variations.
|
||
|
Currently the same seed is used for all clips along the track.
|
||
|
|
||
|
If the Interpolation check box is enabled, supports entering two sets of prompt,
|
||
|
seed, and denoising value and smoothly blends between them along the selected
|
||
|
duration of the audio. This is a great way to create a transition.
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
device = streamlit_util.select_device(st.sidebar)
|
||
|
extension = streamlit_util.select_audio_extension(st.sidebar)
|
||
|
|
||
|
use_magic_mix = st.sidebar.checkbox("Use Magic Mix", False)
|
||
|
lora_path = st.sidebar.text_input("Lora Path", "")
|
||
|
lora_scale = st.sidebar.number_input("Lora Scale", value=1.0)
|
||
|
|
||
|
with st.sidebar:
|
||
|
num_inference_steps = T.cast(
|
||
|
int,
|
||
|
st.number_input(
|
||
|
"Steps per sample", value=50, help="Number of denoising steps per model run"
|
||
|
),
|
||
|
)
|
||
|
|
||
|
guidance = st.number_input(
|
||
|
"Guidance",
|
||
|
value=7.0,
|
||
|
help="How much the model listens to the text prompt",
|
||
|
)
|
||
|
|
||
|
scheduler = st.selectbox(
|
||
|
"Scheduler",
|
||
|
options=streamlit_util.SCHEDULER_OPTIONS,
|
||
|
index=0,
|
||
|
help="Which diffusion scheduler to use",
|
||
|
)
|
||
|
assert scheduler is not None
|
||
|
|
||
|
audio_file = st.file_uploader(
|
||
|
"Upload audio",
|
||
|
type=streamlit_util.AUDIO_EXTENSIONS,
|
||
|
label_visibility="collapsed",
|
||
|
)
|
||
|
|
||
|
if not audio_file:
|
||
|
st.info("Upload audio to get started")
|
||
|
return
|
||
|
|
||
|
st.write("#### Original")
|
||
|
st.audio(audio_file)
|
||
|
|
||
|
segment = streamlit_util.load_audio_file(audio_file)
|
||
|
|
||
|
# TODO(hayk): Fix
|
||
|
if segment.frame_rate != 44100:
|
||
|
st.warning("Audio must be 44100Hz. Converting")
|
||
|
segment = segment.set_frame_rate(44100)
|
||
|
st.write(f"Duration: {segment.duration_seconds:.2f}s, Sample Rate: {segment.frame_rate}Hz")
|
||
|
|
||
|
clip_p = get_clip_params()
|
||
|
start_time_s = clip_p["start_time_s"]
|
||
|
clip_duration_s = clip_p["clip_duration_s"]
|
||
|
overlap_duration_s = clip_p["overlap_duration_s"]
|
||
|
|
||
|
duration_s = min(clip_p["duration_s"], segment.duration_seconds - start_time_s)
|
||
|
increment_s = clip_duration_s - overlap_duration_s
|
||
|
clip_start_times = start_time_s + np.arange(0, duration_s - clip_duration_s, increment_s)
|
||
|
|
||
|
write_clip_details(
|
||
|
clip_start_times=clip_start_times,
|
||
|
clip_duration_s=clip_duration_s,
|
||
|
overlap_duration_s=overlap_duration_s,
|
||
|
)
|
||
|
|
||
|
interpolate = st.checkbox(
|
||
|
"Interpolate between two endpoints",
|
||
|
value=False,
|
||
|
help="Interpolate between two prompts, seeds, or denoising values along the"
|
||
|
"duration of the segment",
|
||
|
)
|
||
|
|
||
|
counter = streamlit_util.StreamlitCounter()
|
||
|
|
||
|
with st.form("audio to audio form"):
|
||
|
if interpolate:
|
||
|
left, right = st.columns(2)
|
||
|
|
||
|
with left:
|
||
|
st.write("##### Prompt A")
|
||
|
prompt_input_a = PromptInput(guidance=guidance, **get_prompt_inputs(key="a"))
|
||
|
|
||
|
with right:
|
||
|
st.write("##### Prompt B")
|
||
|
prompt_input_b = PromptInput(guidance=guidance, **get_prompt_inputs(key="b"))
|
||
|
elif use_magic_mix:
|
||
|
prompt = st.text_input("Prompt", key="prompt_a")
|
||
|
|
||
|
row = st.columns(4)
|
||
|
|
||
|
seed = T.cast(
|
||
|
int,
|
||
|
row[0].number_input(
|
||
|
"Seed",
|
||
|
value=42,
|
||
|
key="seed_a",
|
||
|
),
|
||
|
)
|
||
|
prompt_input_a = PromptInput(
|
||
|
prompt=prompt,
|
||
|
seed=seed,
|
||
|
guidance=guidance,
|
||
|
)
|
||
|
magic_mix_kmin = row[1].number_input("Kmin", value=0.3)
|
||
|
magic_mix_kmax = row[2].number_input("Kmax", value=0.5)
|
||
|
magic_mix_mix_factor = row[3].number_input("Mix Factor", value=0.5)
|
||
|
else:
|
||
|
prompt_input_a = PromptInput(
|
||
|
guidance=guidance,
|
||
|
**get_prompt_inputs(key="a", include_negative_prompt=True, cols=True),
|
||
|
)
|
||
|
|
||
|
st.form_submit_button("Riff", type="primary", on_click=counter.increment)
|
||
|
|
||
|
show_clip_details = st.sidebar.checkbox("Show Clip Details", True)
|
||
|
show_difference = st.sidebar.checkbox("Show Difference", False)
|
||
|
|
||
|
clip_segments = slice_audio_into_clips(
|
||
|
segment=segment,
|
||
|
clip_start_times=clip_start_times,
|
||
|
clip_duration_s=clip_duration_s,
|
||
|
)
|
||
|
|
||
|
if not prompt_input_a.prompt:
|
||
|
st.info("Enter a prompt")
|
||
|
return
|
||
|
|
||
|
if counter.value == 0:
|
||
|
return
|
||
|
|
||
|
params = SpectrogramParams()
|
||
|
|
||
|
if interpolate:
|
||
|
# TODO(hayk): Make not linspace
|
||
|
alphas = list(np.linspace(0, 1, len(clip_segments)))
|
||
|
alphas_str = ", ".join([f"{alpha:.2f}" for alpha in alphas])
|
||
|
st.write(f"**Alphas** : [{alphas_str}]")
|
||
|
|
||
|
result_images: T.List[Image.Image] = []
|
||
|
result_segments: T.List[pydub.AudioSegment] = []
|
||
|
for i, clip_segment in enumerate(clip_segments):
|
||
|
st.write(f"### Clip {i} at {clip_start_times[i]:.2f}s")
|
||
|
|
||
|
audio_bytes = io.BytesIO()
|
||
|
clip_segment.export(audio_bytes, format="wav")
|
||
|
|
||
|
init_image = streamlit_util.spectrogram_image_from_audio(
|
||
|
clip_segment,
|
||
|
params=params,
|
||
|
device=device,
|
||
|
)
|
||
|
|
||
|
# TODO(hayk): Roll this into spectrogram_image_from_audio?
|
||
|
init_image_resized = scale_image_to_32_stride(init_image)
|
||
|
|
||
|
progress_callback = None
|
||
|
if show_clip_details:
|
||
|
left, right = st.columns(2)
|
||
|
|
||
|
left.write("##### Source Clip")
|
||
|
left.image(init_image, use_column_width=False)
|
||
|
left.audio(audio_bytes)
|
||
|
|
||
|
right.write("##### Riffed Clip")
|
||
|
empty_bin = right.empty()
|
||
|
with empty_bin.container():
|
||
|
st.info("Riffing...")
|
||
|
progress = st.progress(0.0)
|
||
|
progress_callback = progress.progress
|
||
|
|
||
|
if interpolate:
|
||
|
assert use_magic_mix is False, "Cannot use magic mix and interpolate together"
|
||
|
inputs = InferenceInput(
|
||
|
alpha=float(alphas[i]),
|
||
|
num_inference_steps=num_inference_steps,
|
||
|
seed_image_id="og_beat",
|
||
|
start=prompt_input_a,
|
||
|
end=prompt_input_b,
|
||
|
)
|
||
|
|
||
|
image, audio_bytes = run_interpolation(
|
||
|
inputs=inputs,
|
||
|
init_image=init_image_resized,
|
||
|
device=device,
|
||
|
)
|
||
|
elif use_magic_mix:
|
||
|
assert not prompt_input_a.negative_prompt, "No negative prompt with magic mix"
|
||
|
image = streamlit_util.run_img2img_magic_mix(
|
||
|
prompt=prompt_input_a.prompt,
|
||
|
init_image=init_image_resized,
|
||
|
num_inference_steps=num_inference_steps,
|
||
|
guidance_scale=guidance,
|
||
|
seed=prompt_input_a.seed,
|
||
|
kmin=magic_mix_kmin,
|
||
|
kmax=magic_mix_kmax,
|
||
|
mix_factor=magic_mix_mix_factor,
|
||
|
device=device,
|
||
|
scheduler=scheduler,
|
||
|
)
|
||
|
else:
|
||
|
image = streamlit_util.run_img2img(
|
||
|
prompt=prompt_input_a.prompt,
|
||
|
init_image=init_image_resized,
|
||
|
denoising_strength=prompt_input_a.denoising,
|
||
|
num_inference_steps=num_inference_steps,
|
||
|
guidance_scale=guidance,
|
||
|
negative_prompt=prompt_input_a.negative_prompt,
|
||
|
seed=prompt_input_a.seed,
|
||
|
progress_callback=progress_callback,
|
||
|
device=device,
|
||
|
scheduler=scheduler,
|
||
|
lora_path=lora_path,
|
||
|
lora_scale=lora_scale,
|
||
|
)
|
||
|
|
||
|
# Resize back to original size
|
||
|
image = image.resize(init_image.size, Image.BICUBIC)
|
||
|
|
||
|
result_images.append(image)
|
||
|
|
||
|
if show_clip_details:
|
||
|
empty_bin.empty()
|
||
|
right.image(image, use_column_width=False)
|
||
|
|
||
|
riffed_segment = streamlit_util.audio_segment_from_spectrogram_image(
|
||
|
image=image,
|
||
|
params=params,
|
||
|
device=device,
|
||
|
)
|
||
|
result_segments.append(riffed_segment)
|
||
|
|
||
|
audio_bytes = io.BytesIO()
|
||
|
riffed_segment.export(audio_bytes, format="wav")
|
||
|
|
||
|
if show_clip_details:
|
||
|
right.audio(audio_bytes)
|
||
|
|
||
|
if show_clip_details and show_difference:
|
||
|
diff_np = np.maximum(
|
||
|
0, np.asarray(init_image).astype(np.float32) - np.asarray(image).astype(np.float32)
|
||
|
)
|
||
|
diff_image = Image.fromarray(255 - diff_np.astype(np.uint8))
|
||
|
diff_segment = streamlit_util.audio_segment_from_spectrogram_image(
|
||
|
image=diff_image,
|
||
|
params=params,
|
||
|
device=device,
|
||
|
)
|
||
|
|
||
|
audio_bytes = io.BytesIO()
|
||
|
diff_segment.export(audio_bytes, format=extension)
|
||
|
st.audio(audio_bytes)
|
||
|
|
||
|
# Combine clips with a crossfade based on overlap
|
||
|
combined_segment = audio_util.stitch_segments(result_segments, crossfade_s=overlap_duration_s)
|
||
|
|
||
|
st.write(f"#### Final Audio ({combined_segment.duration_seconds}s)")
|
||
|
|
||
|
input_name = Path(audio_file.name).stem
|
||
|
output_name = f"{input_name}_{prompt_input_a.prompt.replace(' ', '_')}"
|
||
|
streamlit_util.display_and_download_audio(combined_segment, output_name, extension=extension)
|
||
|
|
||
|
|
||
|
def get_clip_params(advanced: bool = False) -> T.Dict[str, T.Any]:
|
||
|
"""
|
||
|
Render the parameters of slicing audio into clips.
|
||
|
"""
|
||
|
p: T.Dict[str, T.Any] = {}
|
||
|
|
||
|
cols = st.columns(4)
|
||
|
|
||
|
p["start_time_s"] = cols[0].number_input(
|
||
|
"Start Time [s]",
|
||
|
min_value=0.0,
|
||
|
value=0.0,
|
||
|
)
|
||
|
p["duration_s"] = cols[1].number_input(
|
||
|
"Duration [s]",
|
||
|
min_value=0.0,
|
||
|
value=15.0,
|
||
|
)
|
||
|
|
||
|
if advanced:
|
||
|
p["clip_duration_s"] = cols[2].number_input(
|
||
|
"Clip Duration [s]",
|
||
|
min_value=3.0,
|
||
|
max_value=10.0,
|
||
|
value=5.0,
|
||
|
)
|
||
|
else:
|
||
|
p["clip_duration_s"] = 5.0
|
||
|
|
||
|
if advanced:
|
||
|
p["overlap_duration_s"] = cols[3].number_input(
|
||
|
"Overlap Duration [s]",
|
||
|
min_value=0.0,
|
||
|
max_value=10.0,
|
||
|
value=0.2,
|
||
|
)
|
||
|
else:
|
||
|
p["overlap_duration_s"] = 0.2
|
||
|
|
||
|
return p
|
||
|
|
||
|
|
||
|
def write_clip_details(
|
||
|
clip_start_times: np.ndarray, clip_duration_s: float, overlap_duration_s: float
|
||
|
):
|
||
|
"""
|
||
|
Write details of the clips to be sliced from an audio segment.
|
||
|
"""
|
||
|
clip_details_text = (
|
||
|
f"Slicing {len(clip_start_times)} clips of duration {clip_duration_s}s "
|
||
|
f"with overlap {overlap_duration_s}s"
|
||
|
)
|
||
|
|
||
|
with st.expander(clip_details_text):
|
||
|
st.dataframe(
|
||
|
{
|
||
|
"Start Time [s]": clip_start_times,
|
||
|
"End Time [s]": clip_start_times + clip_duration_s,
|
||
|
"Duration [s]": clip_duration_s,
|
||
|
}
|
||
|
)
|
||
|
|
||
|
|
||
|
def slice_audio_into_clips(
|
||
|
segment: pydub.AudioSegment, clip_start_times: T.Sequence[float], clip_duration_s: float
|
||
|
) -> T.List[pydub.AudioSegment]:
|
||
|
"""
|
||
|
Slice an audio segment into a list of clips of a given duration at the given start times.
|
||
|
"""
|
||
|
clip_segments: T.List[pydub.AudioSegment] = []
|
||
|
for i, clip_start_time_s in enumerate(clip_start_times):
|
||
|
clip_start_time_ms = int(clip_start_time_s * 1000)
|
||
|
clip_duration_ms = int(clip_duration_s * 1000)
|
||
|
clip_segment = segment[clip_start_time_ms : clip_start_time_ms + clip_duration_ms]
|
||
|
|
||
|
# TODO(hayk): I don't think this is working properly
|
||
|
if i == len(clip_start_times) - 1:
|
||
|
silence_ms = clip_duration_ms - int(clip_segment.duration_seconds * 1000)
|
||
|
if silence_ms > 0:
|
||
|
clip_segment = clip_segment.append(pydub.AudioSegment.silent(duration=silence_ms))
|
||
|
|
||
|
clip_segments.append(clip_segment)
|
||
|
|
||
|
return clip_segments
|
||
|
|
||
|
|
||
|
def scale_image_to_32_stride(image: Image.Image) -> Image.Image:
|
||
|
"""
|
||
|
Scale an image to a size that is a multiple of 32.
|
||
|
"""
|
||
|
closest_width = int(np.ceil(image.width / 32) * 32)
|
||
|
closest_height = int(np.ceil(image.height / 32) * 32)
|
||
|
return image.resize((closest_width, closest_height), Image.BICUBIC)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
render_audio_to_audio()
|