parent
1335afb72f
commit
152192006e
|
@ -116,9 +116,6 @@ def sample_clips(
|
|||
if not output_dir_path.exists():
|
||||
output_dir_path.mkdir(parents=True)
|
||||
|
||||
# TODO(hayk): Might be a lot easier with pydub
|
||||
# https://github.com/jiaaro/pydub/blob/master/API.markdown#audiosegmentfrom_file
|
||||
|
||||
segment_duration_ms = int(segment.duration_seconds * 1000)
|
||||
for i in range(num_clips):
|
||||
clip_start_ms = np.random.randint(0, segment_duration_ms - duration_ms)
|
||||
|
|
|
@ -1,25 +0,0 @@
|
|||
import pydub
|
||||
import streamlit as st
|
||||
|
||||
|
||||
def run():
|
||||
st.set_page_config(layout="wide", page_icon="🎸")
|
||||
|
||||
audio_file = st.file_uploader("Upload a file", type=["wav", "mp3", "ogg"])
|
||||
if not audio_file:
|
||||
st.info("Upload an audio file to get started")
|
||||
return
|
||||
|
||||
st.audio(audio_file)
|
||||
|
||||
segment = pydub.AudioSegment.from_file(audio_file)
|
||||
st.write(" \n".join([
|
||||
f"**Duration**: {segment.duration_seconds:.3f} seconds",
|
||||
f"**Channels**: {segment.channels}",
|
||||
f"**Sample rate**: {segment.frame_rate} Hz",
|
||||
f"**Sample width**: {segment.sample_width} bytes",
|
||||
]))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
|
@ -1,12 +1,26 @@
|
|||
import dataclasses
|
||||
|
||||
import streamlit as st
|
||||
from PIL import Image
|
||||
|
||||
from riffusion.spectrogram_params import SpectrogramParams
|
||||
from riffusion.streamlit import util as streamlit_util
|
||||
from riffusion.util.image_util import exif_from_image
|
||||
|
||||
|
||||
def render_image_to_audio() -> None:
|
||||
image_file = st.sidebar.file_uploader(
|
||||
st.set_page_config(layout="wide", page_icon="🎸")
|
||||
|
||||
st.subheader(":musical_keyboard: Image to Audio")
|
||||
st.write(
|
||||
"""
|
||||
Reconstruct audio from spectrogram images.
|
||||
"""
|
||||
)
|
||||
|
||||
device = streamlit_util.select_device(st.sidebar)
|
||||
|
||||
image_file = st.file_uploader(
|
||||
"Upload a file",
|
||||
type=["png", "jpg", "jpeg"],
|
||||
label_visibility="collapsed",
|
||||
|
@ -18,29 +32,26 @@ def render_image_to_audio() -> None:
|
|||
image = Image.open(image_file)
|
||||
st.image(image)
|
||||
|
||||
exif = exif_from_image(image)
|
||||
st.write("Exif data:")
|
||||
st.write(exif)
|
||||
with st.expander("Image metadata", expanded=False):
|
||||
exif = exif_from_image(image)
|
||||
st.json(exif)
|
||||
|
||||
# device = "cuda"
|
||||
try:
|
||||
params = SpectrogramParams.from_exif(exif=image.getexif())
|
||||
except KeyError:
|
||||
st.info("Could not find spectrogram parameters in exif data. Using defaults.")
|
||||
params = SpectrogramParams()
|
||||
|
||||
# try:
|
||||
# params = SpectrogramParams.from_exif(exif=image.getexif())
|
||||
# except KeyError:
|
||||
# st.warning("Could not find spectrogram parameters in exif data. Using defaults.")
|
||||
# params = SpectrogramParams()
|
||||
with st.expander("Spectrogram Parameters", expanded=False):
|
||||
st.json(dataclasses.asdict(params))
|
||||
|
||||
# segment = streamlit_util.audio_from_spectrogram_image(
|
||||
# image=image,
|
||||
# params=params,
|
||||
# device=device,
|
||||
# )
|
||||
|
||||
# mp3_bytes = io.BytesIO()
|
||||
# segment.export(mp3_bytes, format="mp3")
|
||||
# mp3_bytes.seek(0)
|
||||
|
||||
# st.audio(mp3_bytes)
|
||||
audio_bytes = streamlit_util.audio_bytes_from_spectrogram_image(
|
||||
image=image.copy(),
|
||||
params=params,
|
||||
device=device,
|
||||
output_format="mp3",
|
||||
)
|
||||
st.audio(audio_bytes)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -0,0 +1,197 @@
|
|||
import dataclasses
|
||||
import io
|
||||
import typing as T
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pydub
|
||||
import streamlit as st
|
||||
from PIL import Image
|
||||
|
||||
from riffusion.datatypes import InferenceInput, PromptInput
|
||||
from riffusion.spectrogram_params import SpectrogramParams
|
||||
from riffusion.streamlit import util as streamlit_util
|
||||
|
||||
|
||||
def render_interpolation_demo() -> None:
|
||||
st.set_page_config(layout="wide", page_icon="🎸")
|
||||
|
||||
st.subheader(":performing_arts: Interpolation")
|
||||
st.write(
|
||||
"""
|
||||
Interpolate between prompts in the latent space.
|
||||
"""
|
||||
)
|
||||
|
||||
# Sidebar params
|
||||
|
||||
device = streamlit_util.select_device(st.sidebar)
|
||||
|
||||
num_interpolation_steps = T.cast(
|
||||
int,
|
||||
st.sidebar.number_input(
|
||||
"Interpolation steps",
|
||||
value=4,
|
||||
min_value=1,
|
||||
max_value=20,
|
||||
help="Number of model generations between the two prompts. Controls the duration.",
|
||||
),
|
||||
)
|
||||
|
||||
num_inference_steps = T.cast(
|
||||
int,
|
||||
st.sidebar.number_input(
|
||||
"Steps per sample", value=50, help="Number of denoising steps per model run"
|
||||
),
|
||||
)
|
||||
|
||||
init_image_name = st.sidebar.selectbox(
|
||||
"Seed image",
|
||||
# TODO(hayk): Read from directory
|
||||
options=["og_beat", "agile", "marim", "motorway", "vibes"],
|
||||
index=0,
|
||||
help="Which seed image to use for img2img",
|
||||
)
|
||||
assert init_image_name is not None
|
||||
|
||||
show_individual_outputs = st.sidebar.checkbox(
|
||||
"Show individual outputs",
|
||||
value=False,
|
||||
help="Show each model output",
|
||||
)
|
||||
show_images = st.sidebar.checkbox(
|
||||
"Show individual images",
|
||||
value=False,
|
||||
help="Show each generated image",
|
||||
)
|
||||
|
||||
# Prompt inputs A and B in two columns
|
||||
|
||||
left, right = st.columns(2)
|
||||
|
||||
with left.expander("Input A", expanded=True):
|
||||
prompt_input_a = get_prompt_inputs(key="a")
|
||||
|
||||
with right.expander("Input B", expanded=True):
|
||||
prompt_input_b = get_prompt_inputs(key="b")
|
||||
|
||||
if not prompt_input_a.prompt or not prompt_input_b.prompt:
|
||||
st.info("Enter both prompts to interpolate between them")
|
||||
return
|
||||
|
||||
alphas = list(np.linspace(0, 1, num_interpolation_steps))
|
||||
alphas_str = ", ".join([f"{alpha:.2f}" for alpha in alphas])
|
||||
st.write(f"**Alphas** : [{alphas_str}]")
|
||||
|
||||
# TODO(hayk): Upload your own seed image.
|
||||
|
||||
init_image_path = (
|
||||
Path(__file__).parent.parent.parent.parent / "seed_images" / f"{init_image_name}.png"
|
||||
)
|
||||
init_image = Image.open(str(init_image_path)).convert("RGB")
|
||||
|
||||
# TODO(hayk): Move this code into a shared place and add to riffusion.cli
|
||||
image_list: T.List[Image.Image] = []
|
||||
audio_bytes_list: T.List[io.BytesIO] = []
|
||||
for i, alpha in enumerate(alphas):
|
||||
inputs = InferenceInput(
|
||||
alpha=float(alpha),
|
||||
num_inference_steps=num_inference_steps,
|
||||
seed_image_id="og_beat",
|
||||
start=prompt_input_a,
|
||||
end=prompt_input_b,
|
||||
)
|
||||
|
||||
if i == 0:
|
||||
with st.expander("Example input JSON", expanded=False):
|
||||
st.json(dataclasses.asdict(inputs))
|
||||
|
||||
image, audio_bytes = run_interpolation(
|
||||
inputs=inputs,
|
||||
init_image=init_image,
|
||||
device=device,
|
||||
)
|
||||
|
||||
if show_individual_outputs:
|
||||
st.write(f"#### ({i + 1} / {len(alphas)}) Alpha={alpha:.2f}")
|
||||
if show_images:
|
||||
st.image(image)
|
||||
st.audio(audio_bytes)
|
||||
|
||||
image_list.append(image)
|
||||
audio_bytes_list.append(audio_bytes)
|
||||
|
||||
st.write("#### Final Output")
|
||||
|
||||
# TODO(hayk): Concatenate with better blending
|
||||
audio_segments = [pydub.AudioSegment.from_file(audio_bytes) for audio_bytes in audio_bytes_list]
|
||||
concat_segment = audio_segments[0]
|
||||
for segment in audio_segments[1:]:
|
||||
concat_segment = concat_segment.append(segment, crossfade=0)
|
||||
|
||||
audio_bytes = io.BytesIO()
|
||||
concat_segment.export(audio_bytes, format="mp3")
|
||||
audio_bytes.seek(0)
|
||||
|
||||
st.write(f"Duration: {concat_segment.duration_seconds:.3f} seconds")
|
||||
st.audio(audio_bytes)
|
||||
|
||||
|
||||
def get_prompt_inputs(key: str) -> PromptInput:
|
||||
"""
|
||||
Compute prompt inputs from widgets.
|
||||
"""
|
||||
prompt = st.text_input("Prompt", label_visibility="collapsed", key=f"prompt_{key}")
|
||||
seed = T.cast(int, st.number_input("Seed", value=42, key=f"seed_{key}"))
|
||||
denoising = st.number_input(
|
||||
"Denoising", value=0.75, key=f"denoising_{key}", help="How much to modify the seed image"
|
||||
)
|
||||
guidance = st.number_input(
|
||||
"Guidance",
|
||||
value=7.0,
|
||||
key=f"guidance_{key}",
|
||||
help="How much the model listens to the text prompt",
|
||||
)
|
||||
|
||||
return PromptInput(
|
||||
prompt=prompt,
|
||||
seed=seed,
|
||||
denoising=denoising,
|
||||
guidance=guidance,
|
||||
)
|
||||
|
||||
|
||||
@st.experimental_memo
|
||||
def run_interpolation(
|
||||
inputs: InferenceInput, init_image: Image.Image, device: str = "cuda"
|
||||
) -> T.Tuple[Image.Image, io.BytesIO]:
|
||||
"""
|
||||
Cached function for riffusion interpolation.
|
||||
"""
|
||||
pipeline = streamlit_util.load_riffusion_checkpoint(device=device)
|
||||
|
||||
image = pipeline.riffuse(
|
||||
inputs,
|
||||
init_image=init_image,
|
||||
mask_image=None,
|
||||
)
|
||||
|
||||
# TODO(hayk): Change the frequency range to [20, 20k] once the model is retrained
|
||||
params = SpectrogramParams(
|
||||
min_frequency=0,
|
||||
max_frequency=10000,
|
||||
)
|
||||
|
||||
# Reconstruct from image to audio
|
||||
audio_bytes = streamlit_util.audio_bytes_from_spectrogram_image(
|
||||
image=image,
|
||||
params=params,
|
||||
device=device,
|
||||
output_format="mp3",
|
||||
)
|
||||
|
||||
return image, audio_bytes
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
render_interpolation_demo()
|
|
@ -1,97 +0,0 @@
|
|||
import io
|
||||
from pathlib import Path
|
||||
|
||||
import dacite
|
||||
import streamlit as st
|
||||
import torch
|
||||
from PIL import Image
|
||||
|
||||
from riffusion.datatypes import InferenceInput
|
||||
from riffusion.spectrogram_image_converter import SpectrogramImageConverter
|
||||
from riffusion.spectrogram_params import SpectrogramParams
|
||||
from riffusion.streamlit import util as streamlit_util
|
||||
|
||||
|
||||
def render_interpolation_demo() -> None:
|
||||
"""
|
||||
Render audio from text.
|
||||
"""
|
||||
prompt = st.text_input("Prompt", label_visibility="collapsed")
|
||||
if not prompt:
|
||||
st.info("Enter a prompt")
|
||||
return
|
||||
|
||||
seed = st.sidebar.number_input("Seed", value=42)
|
||||
denoising = st.sidebar.number_input("Denoising", value=0.01)
|
||||
guidance = st.sidebar.number_input("Guidance", value=7.0)
|
||||
num_inference_steps = st.sidebar.number_input("Inference steps", value=50)
|
||||
|
||||
default_device = "cpu"
|
||||
if torch.cuda.is_available():
|
||||
default_device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
default_device = "mps"
|
||||
|
||||
device_options = ["cuda", "cpu", "mps"]
|
||||
device = st.sidebar.selectbox(
|
||||
"Device", options=device_options, index=device_options.index(default_device)
|
||||
)
|
||||
assert device is not None
|
||||
|
||||
pipeline = streamlit_util.load_riffusion_checkpoint(device=device)
|
||||
|
||||
input_dict = {
|
||||
"alpha": 0.75,
|
||||
"num_inference_steps": num_inference_steps,
|
||||
"seed_image_id": "og_beat",
|
||||
"start": {
|
||||
"prompt": prompt,
|
||||
"seed": seed,
|
||||
"denoising": denoising,
|
||||
"guidance": guidance,
|
||||
},
|
||||
"end": {
|
||||
"prompt": prompt,
|
||||
"seed": seed,
|
||||
"denoising": denoising,
|
||||
"guidance": guidance,
|
||||
},
|
||||
}
|
||||
st.json(input_dict)
|
||||
|
||||
inputs = dacite.from_dict(InferenceInput, input_dict)
|
||||
|
||||
# TODO fix
|
||||
init_image_path = Path(__file__).parent.parent.parent.parent / "seed_images" / "og_beat.png"
|
||||
init_image = Image.open(str(init_image_path)).convert("RGB")
|
||||
|
||||
# Execute the model to get the spectrogram image
|
||||
image = pipeline.riffuse(
|
||||
inputs,
|
||||
init_image=init_image,
|
||||
mask_image=None,
|
||||
)
|
||||
st.image(image)
|
||||
|
||||
# TODO(hayk): Change the frequency range to [20, 20k] once the model is retrained
|
||||
params = SpectrogramParams(
|
||||
min_frequency=0,
|
||||
max_frequency=10000,
|
||||
)
|
||||
|
||||
# Reconstruct audio from the image
|
||||
# TODO(hayk): It may help performance to cache this object
|
||||
converter = SpectrogramImageConverter(params=params, device=str(pipeline.device))
|
||||
segment = converter.audio_from_spectrogram_image(
|
||||
image,
|
||||
apply_filters=True,
|
||||
)
|
||||
|
||||
mp3_bytes = io.BytesIO()
|
||||
segment.export(mp3_bytes, format="mp3")
|
||||
mp3_bytes.seek(0)
|
||||
st.audio(mp3_bytes)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
render_interpolation_demo()
|
|
@ -0,0 +1,85 @@
|
|||
import tempfile
|
||||
import typing as T
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import pydub
|
||||
import streamlit as st
|
||||
|
||||
|
||||
def render_sample_clips() -> None:
|
||||
st.set_page_config(layout="wide", page_icon="🎸")
|
||||
|
||||
st.subheader(":scissors: Sample Clips")
|
||||
st.write(
|
||||
"""
|
||||
Export short clips from an audio file.
|
||||
"""
|
||||
)
|
||||
|
||||
audio_file = st.file_uploader(
|
||||
"Upload a file",
|
||||
type=["wav", "mp3", "ogg"],
|
||||
label_visibility="collapsed",
|
||||
)
|
||||
if not audio_file:
|
||||
st.info("Upload an audio file to get started")
|
||||
return
|
||||
|
||||
st.audio(audio_file)
|
||||
|
||||
segment = pydub.AudioSegment.from_file(audio_file)
|
||||
st.write(
|
||||
" \n".join(
|
||||
[
|
||||
f"**Duration**: {segment.duration_seconds:.3f} seconds",
|
||||
f"**Channels**: {segment.channels}",
|
||||
f"**Sample rate**: {segment.frame_rate} Hz",
|
||||
f"**Sample width**: {segment.sample_width} bytes",
|
||||
]
|
||||
)
|
||||
)
|
||||
|
||||
seed = T.cast(int, st.sidebar.number_input("Seed", value=42))
|
||||
duration_ms = T.cast(int, st.sidebar.number_input("Duration (ms)", value=5000))
|
||||
export_as_mono = st.sidebar.checkbox("Export as Mono", False)
|
||||
num_clips = T.cast(int, st.sidebar.number_input("Number of Clips", value=3))
|
||||
extension = st.sidebar.selectbox("Extension", ["mp3", "wav", "ogg"])
|
||||
assert extension is not None
|
||||
|
||||
# Optionally specify an output directory
|
||||
output_dir = st.text_input("Output Directory")
|
||||
if not output_dir:
|
||||
tmp_dir = tempfile.mkdtemp(prefix="sample_clips_")
|
||||
st.info(f"Specify an output directory. Suggested: `{tmp_dir}`")
|
||||
return
|
||||
|
||||
output_path = Path(output_dir)
|
||||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if seed >= 0:
|
||||
np.random.seed(seed)
|
||||
|
||||
if export_as_mono and segment.channels > 1:
|
||||
segment = segment.set_channels(1)
|
||||
|
||||
# TODO(hayk): Share code with riffusion.cli.sample_clips.
|
||||
segment_duration_ms = int(segment.duration_seconds * 1000)
|
||||
for i in range(num_clips):
|
||||
clip_start_ms = np.random.randint(0, segment_duration_ms - duration_ms)
|
||||
clip = segment[clip_start_ms : clip_start_ms + duration_ms]
|
||||
|
||||
clip_name = f"clip_{i}_start_{clip_start_ms}_ms_duration_{duration_ms}_ms.{extension}"
|
||||
|
||||
st.write(f"#### Clip {i + 1} / {num_clips} -- `{clip_name}`")
|
||||
|
||||
clip_path = output_path / clip_name
|
||||
clip.export(clip_path, format=extension)
|
||||
|
||||
st.audio(str(clip_path))
|
||||
|
||||
st.info(f"Wrote {num_clips} clip(s) to `{str(output_path)}`")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
render_sample_clips()
|
|
@ -7,19 +7,25 @@ from riffusion.streamlit import util as streamlit_util
|
|||
|
||||
|
||||
def render_text_to_audio() -> None:
|
||||
st.set_page_config(layout="wide", page_icon="🎸")
|
||||
|
||||
st.subheader(":pencil2: Text to Audio")
|
||||
st.write(
|
||||
"""
|
||||
Generate audio from text prompts. \nRuns the model directly without a seed image or
|
||||
interpolation.
|
||||
"""
|
||||
Render audio from text.
|
||||
"""
|
||||
prompt = st.text_input("Prompt")
|
||||
negative_prompt = st.text_input("Negative prompt")
|
||||
)
|
||||
|
||||
device = streamlit_util.select_device(st.sidebar)
|
||||
|
||||
prompt = st.text_input("Prompt")
|
||||
negative_prompt = st.text_input("Negative prompt")
|
||||
|
||||
with st.sidebar.expander("Text to Audio Params", expanded=True):
|
||||
seed = T.cast(int, st.number_input("Seed", value=42))
|
||||
num_inference_steps = T.cast(int, st.number_input("Inference steps", value=50))
|
||||
width = T.cast(int, st.number_input("Width", value=512))
|
||||
height = T.cast(int, st.number_input("Height", value=512))
|
||||
guidance = st.number_input(
|
||||
"Guidance", value=7.0, help="How much the model listens to the text prompt"
|
||||
)
|
||||
|
@ -35,9 +41,10 @@ def render_text_to_audio() -> None:
|
|||
negative_prompt=negative_prompt,
|
||||
seed=seed,
|
||||
width=width,
|
||||
height=height,
|
||||
height=512,
|
||||
device=device,
|
||||
)
|
||||
|
||||
st.image(image)
|
||||
|
||||
# TODO(hayk): Change the frequency range to [20, 20k] once the model is retrained
|
||||
|
|
|
@ -7,27 +7,67 @@ import streamlit as st
|
|||
from riffusion.spectrogram_params import SpectrogramParams
|
||||
from riffusion.streamlit import util as streamlit_util
|
||||
|
||||
# Example input json file to process in batch
|
||||
EXAMPLE_INPUT = """
|
||||
{
|
||||
"params": {
|
||||
"seed": 42,
|
||||
"num_inference_steps": 50,
|
||||
"guidance": 7.0,
|
||||
"width": 512,
|
||||
},
|
||||
"entries": [
|
||||
{
|
||||
"prompt": "Church bells"
|
||||
},
|
||||
{
|
||||
"prompt": "electronic beats",
|
||||
"negative_prompt": "drums"
|
||||
},
|
||||
{
|
||||
"prompt": "classical violin concerto"
|
||||
}
|
||||
]
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def render_text_to_audio_batch() -> None:
|
||||
st.set_page_config(layout="wide", page_icon="🎸")
|
||||
|
||||
st.subheader(":scroll: Text to Audio Batch")
|
||||
st.write(
|
||||
"""
|
||||
Generate audio in batch from a JSON file of text prompts. \nThe input
|
||||
file contains a global params block and a list of entries with positive and negative
|
||||
prompts.
|
||||
"""
|
||||
Render audio from text in batches, reading from a text file.
|
||||
"""
|
||||
json_file = st.file_uploader("JSON file", type=["json"])
|
||||
)
|
||||
device = streamlit_util.select_device(st.sidebar)
|
||||
|
||||
# Upload a JSON file
|
||||
json_file = st.file_uploader(
|
||||
"JSON file",
|
||||
type=["json"],
|
||||
label_visibility="collapsed",
|
||||
)
|
||||
|
||||
# Handle the null case
|
||||
if json_file is None:
|
||||
st.info("Upload a JSON file of prompts")
|
||||
st.info("Upload a JSON file containing params and prompts")
|
||||
with st.expander("Example inputs.json", expanded=False):
|
||||
st.code(EXAMPLE_INPUT)
|
||||
return
|
||||
|
||||
# Read in and print it
|
||||
data = json.loads(json_file.read())
|
||||
|
||||
with st.expander("Data", expanded=False):
|
||||
with st.expander("Input Data", expanded=False):
|
||||
st.json(data)
|
||||
|
||||
params = data["params"]
|
||||
entries = data["entries"]
|
||||
|
||||
device = streamlit_util.select_device(st.sidebar)
|
||||
|
||||
show_images = st.sidebar.checkbox("Show Images", True)
|
||||
show_images = st.sidebar.checkbox("Show Images", False)
|
||||
|
||||
# Optionally specify an output directory
|
||||
output_dir = st.sidebar.text_input("Output Directory", "")
|
||||
|
@ -37,21 +77,20 @@ def render_text_to_audio_batch() -> None:
|
|||
output_path.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
for i, entry in enumerate(entries):
|
||||
st.write(f"### Entry {i + 1} / {len(entries)}")
|
||||
|
||||
st.write(f"Prompt: {entry['prompt']}")
|
||||
st.write(f"#### Entry {i + 1} / {len(entries)}")
|
||||
|
||||
negative_prompt = entry.get("negative_prompt", None)
|
||||
st.write(f"Negative prompt: {negative_prompt}")
|
||||
|
||||
st.write(f"**Prompt**: {entry['prompt']} \n" + f"**Negative prompt**: {negative_prompt}")
|
||||
|
||||
image = streamlit_util.run_txt2img(
|
||||
prompt=entry["prompt"],
|
||||
negative_prompt=negative_prompt,
|
||||
seed=params["seed"],
|
||||
num_inference_steps=params["num_inference_steps"],
|
||||
guidance=params["guidance"],
|
||||
width=params["width"],
|
||||
height=params["height"],
|
||||
seed=params.get("seed", 42),
|
||||
num_inference_steps=params.get("num_inference_steps", 50),
|
||||
guidance=params.get("guidance", 7.0),
|
||||
width=params.get("width", 512),
|
||||
height=512,
|
||||
device=device,
|
||||
)
|
||||
|
||||
|
@ -91,6 +130,8 @@ def render_text_to_audio_batch() -> None:
|
|||
output_json_path = output_path / "index.json"
|
||||
output_json_path.write_text(json.dumps(data, indent=4))
|
||||
st.info(f"Output written to {str(output_path)}")
|
||||
else:
|
||||
st.info("Enter output directory in sidebar to save to disk")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -0,0 +1,37 @@
|
|||
import streamlit as st
|
||||
|
||||
|
||||
def render_main():
|
||||
st.set_page_config(layout="wide", page_icon="🎸")
|
||||
st.header(":guitar: Riffusion Playground")
|
||||
st.write("Interactive app for common riffusion tasks.")
|
||||
|
||||
left, right = st.columns(2)
|
||||
|
||||
with left:
|
||||
create_link(":performing_arts: Interpolation", "/interpolation")
|
||||
st.write("Interpolate between prompts in the latent space.")
|
||||
|
||||
create_link(":pencil2: Text to Audio", "/text_to_audio")
|
||||
st.write("Generate audio from text prompts.")
|
||||
|
||||
create_link(":scroll: Text to Audio Batch", "/text_to_audio_batch")
|
||||
st.write("Generate audio in batch from a JSON file of text prompts.")
|
||||
|
||||
with right:
|
||||
create_link(":scissors: Sample Clips", "/sample_clips")
|
||||
st.write("Export short clips from an audio file.")
|
||||
|
||||
create_link(":musical_keyboard: Image to Audio", "/image_to_audio")
|
||||
st.write("Reconstruct audio from spectrogram images.")
|
||||
|
||||
|
||||
def create_link(name: str, url: str) -> None:
|
||||
st.markdown(
|
||||
f"### <a href='{url}' target='_self' style='text-decoration: none;'>{name}</a>",
|
||||
unsafe_allow_html=True,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
render_main()
|
|
@ -13,6 +13,8 @@ from riffusion.riffusion_pipeline import RiffusionPipeline
|
|||
from riffusion.spectrogram_image_converter import SpectrogramImageConverter
|
||||
from riffusion.spectrogram_params import SpectrogramParams
|
||||
|
||||
# TODO(hayk): Add URL params
|
||||
|
||||
|
||||
@st.experimental_singleton
|
||||
def load_riffusion_checkpoint(
|
||||
|
@ -53,7 +55,6 @@ def load_stable_diffusion_pipeline(
|
|||
).to(device)
|
||||
|
||||
|
||||
|
||||
@st.experimental_memo
|
||||
def run_txt2img(
|
||||
prompt: str,
|
||||
|
@ -86,25 +87,6 @@ def run_txt2img(
|
|||
return output["images"][0]
|
||||
|
||||
|
||||
# class CachedSpectrogramImageConverter:
|
||||
|
||||
# def __init__(self, params: SpectrogramParams, device: str = "cuda"):
|
||||
# self.p = params
|
||||
# self.device = device
|
||||
# self.converter = self._converter(params, device)
|
||||
|
||||
# @staticmethod
|
||||
# @st.experimental_singleton
|
||||
# def _converter(params: SpectrogramParams, device: str) -> SpectrogramImageConverter:
|
||||
# return SpectrogramImageConverter(params=params, device=device)
|
||||
|
||||
# def audio_from_spectrogram_image(
|
||||
# self,
|
||||
# image: Image.Image
|
||||
# ) -> pydub.AudioSegment:
|
||||
# return self._converter.audio_from_spectrogram_image(image)
|
||||
|
||||
|
||||
@st.experimental_singleton
|
||||
def spectrogram_image_converter(
|
||||
params: SpectrogramParams,
|
||||
|
@ -147,13 +129,3 @@ def select_device(container: T.Any = st.sidebar) -> str:
|
|||
assert device is not None
|
||||
|
||||
return device
|
||||
|
||||
|
||||
# @st.experimental_memo
|
||||
# def spectrogram_image_from_audio(
|
||||
# segment: pydub.AudioSegment,
|
||||
# params: SpectrogramParams,
|
||||
# device: str = "cuda",
|
||||
# ) -> pydub.AudioSegment:
|
||||
# converter = spectrogram_image_converter(params=params, device=device)
|
||||
# return converter.spectrogram_image_from_audio(segment)
|
||||
|
|
Loading…
Reference in New Issue