Support custom checkpoints in text_to_audio
Also have a toggle for 20khz spectrogram mode Topic: playground_custom_checkpoints_text_to_audio
This commit is contained in:
parent
8102bc3017
commit
38cce7ab00
|
@ -28,6 +28,7 @@ def render_text_to_audio() -> None:
|
|||
|
||||
device = streamlit_util.select_device(st.sidebar)
|
||||
extension = streamlit_util.select_audio_extension(st.sidebar)
|
||||
checkpoint = streamlit_util.select_checkpoint(st.sidebar)
|
||||
|
||||
with st.form("Inputs"):
|
||||
prompt = st.text_input("Prompt")
|
||||
|
@ -69,15 +70,25 @@ def render_text_to_audio() -> None:
|
|||
)
|
||||
assert scheduler is not None
|
||||
|
||||
use_20k = st.checkbox("Use 20kHz", value=False)
|
||||
|
||||
if not prompt:
|
||||
st.info("Enter a prompt")
|
||||
return
|
||||
|
||||
# TODO(hayk): Change the frequency range to [20, 20k] once the model is retrained
|
||||
params = SpectrogramParams(
|
||||
min_frequency=0,
|
||||
max_frequency=10000,
|
||||
)
|
||||
if use_20k:
|
||||
params = SpectrogramParams(
|
||||
min_frequency=10,
|
||||
max_frequency=20000,
|
||||
sample_rate=44100,
|
||||
stereo=True,
|
||||
)
|
||||
else:
|
||||
params = SpectrogramParams(
|
||||
min_frequency=0,
|
||||
max_frequency=10000,
|
||||
stereo=False,
|
||||
)
|
||||
|
||||
seed = starting_seed
|
||||
for i in range(1, num_clips + 1):
|
||||
|
@ -91,6 +102,7 @@ def render_text_to_audio() -> None:
|
|||
seed=seed,
|
||||
width=width,
|
||||
height=512,
|
||||
checkpoint=checkpoint,
|
||||
device=device,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
|
|
@ -18,6 +18,8 @@ from riffusion.spectrogram_params import SpectrogramParams
|
|||
|
||||
# TODO(hayk): Add URL params
|
||||
|
||||
DEFAULT_CHECKPOINT = "riffusion/riffusion-model-v1"
|
||||
|
||||
AUDIO_EXTENSIONS = ["mp3", "wav", "flac", "webm", "m4a", "ogg"]
|
||||
IMAGE_EXTENSIONS = ["png", "jpg", "jpeg"]
|
||||
|
||||
|
@ -33,7 +35,7 @@ SCHEDULER_OPTIONS = [
|
|||
|
||||
@st.experimental_singleton
|
||||
def load_riffusion_checkpoint(
|
||||
checkpoint: str = "riffusion/riffusion-model-v1",
|
||||
checkpoint: str = DEFAULT_CHECKPOINT,
|
||||
no_traced_unet: bool = False,
|
||||
device: str = "cuda",
|
||||
) -> RiffusionPipeline:
|
||||
|
@ -49,7 +51,7 @@ def load_riffusion_checkpoint(
|
|||
|
||||
@st.experimental_singleton
|
||||
def load_stable_diffusion_pipeline(
|
||||
checkpoint: str = "riffusion/riffusion-model-v1",
|
||||
checkpoint: str = DEFAULT_CHECKPOINT,
|
||||
device: str = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
scheduler: str = SCHEDULER_OPTIONS[0],
|
||||
|
@ -117,7 +119,7 @@ def pipeline_lock() -> threading.Lock:
|
|||
|
||||
@st.experimental_singleton
|
||||
def load_stable_diffusion_img2img_pipeline(
|
||||
checkpoint: str = "riffusion/riffusion-model-v1",
|
||||
checkpoint: str = DEFAULT_CHECKPOINT,
|
||||
device: str = "cuda",
|
||||
dtype: torch.dtype = torch.float16,
|
||||
scheduler: str = SCHEDULER_OPTIONS[0],
|
||||
|
@ -152,6 +154,7 @@ def run_txt2img(
|
|||
seed: int,
|
||||
width: int,
|
||||
height: int,
|
||||
checkpoint: str = DEFAULT_CHECKPOINT,
|
||||
device: str = "cuda",
|
||||
scheduler: str = SCHEDULER_OPTIONS[0],
|
||||
) -> Image.Image:
|
||||
|
@ -159,7 +162,11 @@ def run_txt2img(
|
|||
Run the text to image pipeline with caching.
|
||||
"""
|
||||
with pipeline_lock():
|
||||
pipeline = load_stable_diffusion_pipeline(device=device, scheduler=scheduler)
|
||||
pipeline = load_stable_diffusion_pipeline(
|
||||
checkpoint=checkpoint,
|
||||
device=device,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
generator_device = "cpu" if device.lower().startswith("mps") else device
|
||||
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
||||
|
@ -270,6 +277,18 @@ def select_scheduler(container: T.Any = st.sidebar) -> str:
|
|||
return scheduler
|
||||
|
||||
|
||||
def select_checkpoint(container: T.Any = st.sidebar) -> str:
|
||||
"""
|
||||
Provide a custom model checkpoint.
|
||||
"""
|
||||
custom_checkpoint = container.text_input(
|
||||
"Custom Checkpoint",
|
||||
value="",
|
||||
help="Provide a custom model checkpoint",
|
||||
)
|
||||
return custom_checkpoint or DEFAULT_CHECKPOINT
|
||||
|
||||
|
||||
@st.experimental_memo
|
||||
def load_audio_file(audio_file: io.BytesIO) -> pydub.AudioSegment:
|
||||
return pydub.AudioSegment.from_file(audio_file)
|
||||
|
@ -281,9 +300,13 @@ def get_audio_splitter(device: str = "cuda"):
|
|||
|
||||
|
||||
@st.experimental_singleton
|
||||
def load_magic_mix_pipeline(device: str = "cuda", scheduler: str = SCHEDULER_OPTIONS[0]):
|
||||
def load_magic_mix_pipeline(
|
||||
checkpoint: str = DEFAULT_CHECKPOINT,
|
||||
device: str = "cuda",
|
||||
scheduler: str = SCHEDULER_OPTIONS[0],
|
||||
):
|
||||
pipeline = DiffusionPipeline.from_pretrained(
|
||||
"riffusion/riffusion-model-v1",
|
||||
checkpoint,
|
||||
custom_pipeline="magic_mix",
|
||||
).to(device)
|
||||
|
||||
|
@ -302,6 +325,7 @@ def run_img2img_magic_mix(
|
|||
kmin: float,
|
||||
kmax: float,
|
||||
mix_factor: float,
|
||||
checkpoint: str = DEFAULT_CHECKPOINT,
|
||||
device: str = "cuda",
|
||||
scheduler: str = SCHEDULER_OPTIONS[0],
|
||||
):
|
||||
|
@ -310,6 +334,7 @@ def run_img2img_magic_mix(
|
|||
"""
|
||||
with pipeline_lock():
|
||||
pipeline = load_magic_mix_pipeline(
|
||||
checkpoint=checkpoint,
|
||||
device=device,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
@ -335,12 +360,17 @@ def run_img2img(
|
|||
guidance_scale: float,
|
||||
seed: int,
|
||||
negative_prompt: T.Optional[str] = None,
|
||||
checkpoint: str = DEFAULT_CHECKPOINT,
|
||||
device: str = "cuda",
|
||||
scheduler: str = SCHEDULER_OPTIONS[0],
|
||||
progress_callback: T.Optional[T.Callable[[float], T.Any]] = None,
|
||||
) -> Image.Image:
|
||||
with pipeline_lock():
|
||||
pipeline = load_stable_diffusion_img2img_pipeline(device=device, scheduler=scheduler)
|
||||
pipeline = load_stable_diffusion_img2img_pipeline(
|
||||
checkpoint=checkpoint,
|
||||
device=device,
|
||||
scheduler=scheduler,
|
||||
)
|
||||
|
||||
generator_device = "cpu" if device.lower().startswith("mps") else device
|
||||
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
||||
|
|
Loading…
Reference in New Issue