Streamlit app for interactive use of the model

Topic: streamlit_app
This commit is contained in:
Hayk Martiros 2022-12-26 20:01:27 -08:00
parent e8b99fabf9
commit 39dc247a1d
7 changed files with 379 additions and 0 deletions

View File

@ -0,0 +1,3 @@
# streamlit
This package is an interactive streamlit app for riffusion.

View File

View File

@ -0,0 +1,25 @@
import pydub
import streamlit as st
def run():
st.set_page_config(layout="wide", page_icon="🎸")
audio_file = st.file_uploader("Upload a file", type=["wav", "mp3", "ogg"])
if not audio_file:
st.info("Upload an audio file to get started")
return
st.audio(audio_file)
segment = pydub.AudioSegment.from_file(audio_file)
st.write(" \n".join([
f"**Duration**: {segment.duration_seconds:.3f} seconds",
f"**Channels**: {segment.channels}",
f"**Sample rate**: {segment.frame_rate} Hz",
f"**Sample width**: {segment.sample_width} bytes",
]))
if __name__ == "__main__":
run()

View File

@ -0,0 +1,51 @@
import io
import streamlit as st
from PIL import Image
from riffusion.spectrogram_image_converter import SpectrogramImageConverter
from riffusion.spectrogram_params import SpectrogramParams
from riffusion.streamlit import util as streamlit_util
from riffusion.util.image_util import exif_from_image
def render_image_to_audio() -> None:
image_file = st.sidebar.file_uploader(
"Upload a file",
type=["png", "jpg", "jpeg"],
label_visibility="collapsed",
)
if not image_file:
st.info("Upload an image file to get started")
return
image = Image.open(image_file)
st.image(image)
exif = exif_from_image(image)
st.write("Exif data:")
st.write(exif)
device = "cuda"
try:
params = SpectrogramParams.from_exif(exif=image.getexif())
except KeyError:
st.warning("Could not find spectrogram parameters in exif data. Using defaults.")
params = SpectrogramParams()
# segment = streamlit_util.audio_from_spectrogram_image(
# image=image,
# params=params,
# device=device,
# )
# mp3_bytes = io.BytesIO()
# segment.export(mp3_bytes, format="mp3")
# mp3_bytes.seek(0)
# st.audio(mp3_bytes)
if __name__ == "__main__":
render_image_to_audio()

View File

@ -0,0 +1,97 @@
import io
from pathlib import Path
import dacite
import streamlit as st
import torch
from PIL import Image
from riffusion.datatypes import InferenceInput
from riffusion.spectrogram_image_converter import SpectrogramImageConverter
from riffusion.spectrogram_params import SpectrogramParams
from riffusion.streamlit import util as streamlit_util
def render_interpolation_demo() -> None:
"""
Render audio from text.
"""
prompt = st.text_input("Prompt", label_visibility="collapsed")
if not prompt:
st.info("Enter a prompt")
return
seed = st.sidebar.number_input("Seed", value=42)
denoising = st.sidebar.number_input("Denoising", value=0.01)
guidance = st.sidebar.number_input("Guidance", value=7.0)
num_inference_steps = st.sidebar.number_input("Inference steps", value=50)
default_device = "cpu"
if torch.cuda.is_available():
default_device = "cuda"
elif torch.backends.mps.is_available():
default_device = "mps"
device_options = ["cuda", "cpu", "mps"]
device = st.sidebar.selectbox(
"Device", options=device_options, index=device_options.index(default_device)
)
assert device is not None
pipeline = streamlit_util.load_riffusion_checkpoint(device=device)
input_dict = {
"alpha": 0.75,
"num_inference_steps": num_inference_steps,
"seed_image_id": "og_beat",
"start": {
"prompt": prompt,
"seed": seed,
"denoising": denoising,
"guidance": guidance,
},
"end": {
"prompt": prompt,
"seed": seed,
"denoising": denoising,
"guidance": guidance,
},
}
st.json(input_dict)
inputs = dacite.from_dict(InferenceInput, input_dict)
# TODO fix
init_image_path = Path(__file__).parent.parent.parent.parent / "seed_images" / "og_beat.png"
init_image = Image.open(str(init_image_path)).convert("RGB")
# Execute the model to get the spectrogram image
image = pipeline.riffuse(
inputs,
init_image=init_image,
mask_image=None,
)
st.image(image)
# TODO(hayk): Change the frequency range to [20, 20k] once the model is retrained
params = SpectrogramParams(
min_frequency=0,
max_frequency=10000,
)
# Reconstruct audio from the image
# TODO(hayk): It may help performance to cache this object
converter = SpectrogramImageConverter(params=params, device=str(pipeline.device))
segment = converter.audio_from_spectrogram_image(
image,
apply_filters=True,
)
mp3_bytes = io.BytesIO()
segment.export(mp3_bytes, format="mp3")
mp3_bytes.seek(0)
st.audio(mp3_bytes)
if __name__ == "__main__":
render_interpolation_demo()

View File

@ -0,0 +1,130 @@
import io
from pathlib import Path
import dacite
from diffusers import StableDiffusionPipeline
import streamlit as st
import torch
from PIL import Image
from riffusion.datatypes import InferenceInput
from riffusion.spectrogram_image_converter import SpectrogramImageConverter
from riffusion.spectrogram_params import SpectrogramParams
from riffusion.streamlit import util as streamlit_util
@st.experimental_singleton
def load_stable_diffusion_pipeline(
checkpoint: str = "riffusion/riffusion-model-v1",
device: str = "cuda",
dtype: torch.dtype = torch.float16,
) -> StableDiffusionPipeline:
"""
Load the riffusion pipeline.
"""
if device == "cpu" or device.lower().startswith("mps"):
print(f"WARNING: Falling back to float32 on {device}, float16 is unsupported")
dtype = torch.float32
return StableDiffusionPipeline.from_pretrained(
checkpoint,
revision="main",
torch_dtype=dtype,
safety_checker=lambda images, **kwargs: (images, False),
).to(device)
@st.experimental_memo
def run_txt2img(
prompt: str,
num_inference_steps: int,
guidance: float,
negative_prompt: str,
seed: int,
width: int,
height: int,
device: str = "cuda",
) -> Image.Image:
"""
Run the text to image pipeline with caching.
"""
pipeline = load_stable_diffusion_pipeline(device=device)
generator = torch.Generator(device="cpu").manual_seed(seed)
output = pipeline(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance,
negative_prompt=negative_prompt or None,
generator=generator,
width=width,
height=height,
)
return output["images"][0]
def render_text_to_audio() -> None:
"""
Render audio from text.
"""
prompt = st.text_input("Prompt")
if not prompt:
st.info("Enter a prompt")
return
negative_prompt = st.text_input("Negative prompt")
seed = st.sidebar.number_input("Seed", value=42)
num_inference_steps = st.sidebar.number_input("Inference steps", value=20)
width = st.sidebar.number_input("Width", value=512)
height = st.sidebar.number_input("Height", value=512)
guidance = st.sidebar.number_input(
"Guidance", value=7.0, help="How much the model listens to the text prompt"
)
default_device = "cpu"
if torch.cuda.is_available():
default_device = "cuda"
elif torch.backends.mps.is_available():
default_device = "mps"
device_options = ["cuda", "cpu", "mps"]
device = st.sidebar.selectbox(
"Device", options=device_options, index=device_options.index(default_device)
)
assert device is not None
image = run_txt2img(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance=guidance,
negative_prompt=negative_prompt,
seed=seed,
width=width,
height=height,
device=device,
)
st.image(image)
# TODO(hayk): Change the frequency range to [20, 20k] once the model is retrained
params = SpectrogramParams(
min_frequency=0,
max_frequency=10000,
)
segment = streamlit_util.audio_from_spectrogram_image(
image=image,
params=params,
device=device,
)
mp3_bytes = io.BytesIO()
segment.export(mp3_bytes, format="mp3")
mp3_bytes.seek(0)
st.audio(mp3_bytes)
if __name__ == "__main__":
render_text_to_audio()

View File

@ -0,0 +1,73 @@
"""
Streamlit utilities (mostly cached wrappers around riffusion code).
"""
import pydub
import streamlit as st
from PIL import Image
from riffusion.riffusion_pipeline import RiffusionPipeline
from riffusion.spectrogram_image_converter import SpectrogramImageConverter
from riffusion.spectrogram_params import SpectrogramParams
@st.experimental_singleton
def load_riffusion_checkpoint(
checkpoint: str = "riffusion/riffusion-model-v1",
no_traced_unet: bool = False,
device: str = "cuda",
) -> RiffusionPipeline:
"""
Load the riffusion pipeline.
"""
return RiffusionPipeline.load_checkpoint(
checkpoint=checkpoint,
use_traced_unet=not no_traced_unet,
device=device,
)
# class CachedSpectrogramImageConverter:
# def __init__(self, params: SpectrogramParams, device: str = "cuda"):
# self.p = params
# self.device = device
# self.converter = self._converter(params, device)
# @staticmethod
# @st.experimental_singleton
# def _converter(params: SpectrogramParams, device: str) -> SpectrogramImageConverter:
# return SpectrogramImageConverter(params=params, device=device)
# def audio_from_spectrogram_image(
# self,
# image: Image.Image
# ) -> pydub.AudioSegment:
# return self._converter.audio_from_spectrogram_image(image)
@st.experimental_singleton
def spectrogram_image_converter(
params: SpectrogramParams,
device: str = "cuda",
) -> SpectrogramImageConverter:
return SpectrogramImageConverter(params=params, device=device)
@st.experimental_memo
def audio_from_spectrogram_image(
image: Image.Image,
params: SpectrogramParams,
device: str = "cuda",
) -> pydub.AudioSegment:
converter = spectrogram_image_converter(params=params, device=device)
return converter.audio_from_spectrogram_image(image)
# @st.experimental_memo
# def spectrogram_image_from_audio(
# segment: pydub.AudioSegment,
# params: SpectrogramParams,
# device: str = "cuda",
# ) -> pydub.AudioSegment:
# converter = spectrogram_image_converter(params=params, device=device)
# return converter.spectrogram_image_from_audio(segment)