Remove old audio module
No longer needed, it's broken up into cleaner pieces. Topic: clean_rewrite
This commit is contained in:
parent
2fb1153ec8
commit
40a799a3d3
|
@ -1,213 +0,0 @@
|
||||||
"""
|
|
||||||
Audio processing tools to convert between spectrogram images and waveforms.
|
|
||||||
"""
|
|
||||||
import io
|
|
||||||
import typing as T
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image
|
|
||||||
import pydub
|
|
||||||
from scipy.io import wavfile
|
|
||||||
import torch
|
|
||||||
import torchaudio
|
|
||||||
|
|
||||||
|
|
||||||
def wav_bytes_from_spectrogram_image(image: Image.Image) -> T.Tuple[io.BytesIO, float]:
|
|
||||||
"""
|
|
||||||
Reconstruct a WAV audio clip from a spectrogram image. Also returns the duration in seconds.
|
|
||||||
"""
|
|
||||||
|
|
||||||
max_volume = 50
|
|
||||||
power_for_image = 0.25
|
|
||||||
Sxx = spectrogram_from_image(image, max_volume=max_volume, power_for_image=power_for_image)
|
|
||||||
|
|
||||||
sample_rate = 44100 # [Hz]
|
|
||||||
clip_duration_ms = 5000 # [ms]
|
|
||||||
|
|
||||||
bins_per_image = 512
|
|
||||||
n_mels = 512
|
|
||||||
|
|
||||||
# FFT parameters
|
|
||||||
window_duration_ms = 100 # [ms]
|
|
||||||
padded_duration_ms = 400 # [ms]
|
|
||||||
step_size_ms = 10 # [ms]
|
|
||||||
|
|
||||||
# Derived parameters
|
|
||||||
num_samples = int(image.width / float(bins_per_image) * clip_duration_ms) * sample_rate
|
|
||||||
n_fft = int(padded_duration_ms / 1000.0 * sample_rate)
|
|
||||||
hop_length = int(step_size_ms / 1000.0 * sample_rate)
|
|
||||||
win_length = int(window_duration_ms / 1000.0 * sample_rate)
|
|
||||||
|
|
||||||
samples = waveform_from_spectrogram(
|
|
||||||
Sxx=Sxx,
|
|
||||||
n_fft=n_fft,
|
|
||||||
hop_length=hop_length,
|
|
||||||
win_length=win_length,
|
|
||||||
num_samples=num_samples,
|
|
||||||
sample_rate=sample_rate,
|
|
||||||
mel_scale=True,
|
|
||||||
n_mels=n_mels,
|
|
||||||
max_mel_iters=200,
|
|
||||||
num_griffin_lim_iters=32,
|
|
||||||
)
|
|
||||||
|
|
||||||
wav_bytes = io.BytesIO()
|
|
||||||
wavfile.write(wav_bytes, sample_rate, samples.astype(np.int16))
|
|
||||||
wav_bytes.seek(0)
|
|
||||||
|
|
||||||
duration_s = float(len(samples)) / sample_rate
|
|
||||||
|
|
||||||
return wav_bytes, duration_s
|
|
||||||
|
|
||||||
|
|
||||||
def spectrogram_from_image(
|
|
||||||
image: Image.Image, max_volume: float = 50, power_for_image: float = 0.25
|
|
||||||
) -> np.ndarray:
|
|
||||||
"""
|
|
||||||
Compute a spectrogram magnitude array from a spectrogram image.
|
|
||||||
|
|
||||||
TODO(hayk): Add image_from_spectrogram and call this out as the reverse.
|
|
||||||
"""
|
|
||||||
# Convert to a numpy array of floats
|
|
||||||
data = np.array(image).astype(np.float32)
|
|
||||||
|
|
||||||
# Flip Y take a single channel
|
|
||||||
data = data[::-1, :, 0]
|
|
||||||
|
|
||||||
# Invert
|
|
||||||
data = 255 - data
|
|
||||||
|
|
||||||
# Rescale to max volume
|
|
||||||
data = data * max_volume / 255
|
|
||||||
|
|
||||||
# Reverse the power curve
|
|
||||||
data = np.power(data, 1 / power_for_image)
|
|
||||||
|
|
||||||
return data
|
|
||||||
|
|
||||||
def image_from_spectrogram(
|
|
||||||
spectrogram: np.ndarray, max_volume: float = 50, power_for_image: float = 0.25
|
|
||||||
) -> Image.Image:
|
|
||||||
"""
|
|
||||||
Compute a spectrogram image from a spectrogram magnitude array.
|
|
||||||
"""
|
|
||||||
# Apply the power curve
|
|
||||||
data = np.power(spectrogram, power_for_image)
|
|
||||||
|
|
||||||
# Rescale to 0-1
|
|
||||||
data = data / np.max(data)
|
|
||||||
|
|
||||||
# Rescale to 0-255
|
|
||||||
data = data * 255
|
|
||||||
|
|
||||||
# Invert
|
|
||||||
data = 255 - data
|
|
||||||
|
|
||||||
# Convert to a PIL image
|
|
||||||
image = Image.fromarray(data.astype(np.uint8))
|
|
||||||
|
|
||||||
# Flip Y
|
|
||||||
image = image.transpose(Image.FLIP_TOP_BOTTOM)
|
|
||||||
|
|
||||||
# Convert to RGB
|
|
||||||
image = image.convert("RGB")
|
|
||||||
|
|
||||||
return image
|
|
||||||
|
|
||||||
def spectrogram_from_waveform(
|
|
||||||
waveform: np.ndarray,
|
|
||||||
sample_rate: int,
|
|
||||||
n_fft: int,
|
|
||||||
hop_length: int,
|
|
||||||
win_length: int,
|
|
||||||
mel_scale: bool = True,
|
|
||||||
n_mels: int = 512,
|
|
||||||
) -> np.ndarray:
|
|
||||||
"""
|
|
||||||
Compute a spectrogram from a waveform.
|
|
||||||
"""
|
|
||||||
|
|
||||||
spectrogram_func = torchaudio.transforms.Spectrogram(
|
|
||||||
n_fft=n_fft,
|
|
||||||
power=None,
|
|
||||||
hop_length=hop_length,
|
|
||||||
win_length=win_length,
|
|
||||||
)
|
|
||||||
|
|
||||||
waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1)
|
|
||||||
Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0]
|
|
||||||
|
|
||||||
Sxx_mag = np.abs(Sxx_complex)
|
|
||||||
|
|
||||||
if mel_scale:
|
|
||||||
mel_scaler = torchaudio.transforms.MelScale(
|
|
||||||
n_mels=n_mels,
|
|
||||||
sample_rate=sample_rate,
|
|
||||||
f_min=0,
|
|
||||||
f_max=10000,
|
|
||||||
n_stft=n_fft // 2 + 1,
|
|
||||||
norm=None,
|
|
||||||
mel_scale="htk",
|
|
||||||
)
|
|
||||||
|
|
||||||
Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy()
|
|
||||||
|
|
||||||
return Sxx_mag
|
|
||||||
|
|
||||||
|
|
||||||
def waveform_from_spectrogram(
|
|
||||||
Sxx: np.ndarray,
|
|
||||||
n_fft: int,
|
|
||||||
hop_length: int,
|
|
||||||
win_length: int,
|
|
||||||
num_samples: int,
|
|
||||||
sample_rate: int,
|
|
||||||
mel_scale: bool = True,
|
|
||||||
n_mels: int = 512,
|
|
||||||
max_mel_iters: int = 200,
|
|
||||||
num_griffin_lim_iters: int = 32,
|
|
||||||
device: str = "cuda:0",
|
|
||||||
) -> np.ndarray:
|
|
||||||
"""
|
|
||||||
Reconstruct a waveform from a spectrogram.
|
|
||||||
|
|
||||||
This is an approximate inverse of spectrogram_from_waveform, using the Griffin-Lim algorithm
|
|
||||||
to approximate the phase.
|
|
||||||
"""
|
|
||||||
Sxx_torch = torch.from_numpy(Sxx).to(device)
|
|
||||||
|
|
||||||
# TODO(hayk): Make this a class that caches the two things
|
|
||||||
|
|
||||||
if mel_scale:
|
|
||||||
mel_inv_scaler = torchaudio.transforms.InverseMelScale(
|
|
||||||
n_mels=n_mels,
|
|
||||||
sample_rate=sample_rate,
|
|
||||||
f_min=0,
|
|
||||||
f_max=10000,
|
|
||||||
n_stft=n_fft // 2 + 1,
|
|
||||||
norm=None,
|
|
||||||
mel_scale="htk",
|
|
||||||
max_iter=max_mel_iters,
|
|
||||||
).to(device)
|
|
||||||
|
|
||||||
Sxx_torch = mel_inv_scaler(Sxx_torch)
|
|
||||||
|
|
||||||
griffin_lim = torchaudio.transforms.GriffinLim(
|
|
||||||
n_fft=n_fft,
|
|
||||||
win_length=win_length,
|
|
||||||
hop_length=hop_length,
|
|
||||||
power=1.0,
|
|
||||||
n_iter=num_griffin_lim_iters,
|
|
||||||
).to(device)
|
|
||||||
|
|
||||||
waveform = griffin_lim(Sxx_torch).cpu().numpy()
|
|
||||||
|
|
||||||
return waveform
|
|
||||||
|
|
||||||
|
|
||||||
def mp3_bytes_from_wav_bytes(wav_bytes: io.BytesIO) -> io.BytesIO:
|
|
||||||
mp3_bytes = io.BytesIO()
|
|
||||||
sound = pydub.AudioSegment.from_wav(wav_bytes)
|
|
||||||
sound.export(mp3_bytes, format="mp3")
|
|
||||||
mp3_bytes.seek(0)
|
|
||||||
return mp3_bytes
|
|
Loading…
Reference in New Issue